Author: Sanchez-Quesada, J.
Paper Title Page
MOPAB112 Schottky Based Intensity Measurements and Errors Due to Statistical Fluctuations 385
 
  • C. Carli, M.E. Angoletta, F. Caspers, O.R. Jones, F. Pedersen, J. Sanchez-Quesada, L. Søby
    CERN, Geneva, Switzerland
 
  The beam intensities at the Extra Low ENergy Antiproton ring ELENA are too low for standard beam current transformers and, thus, are measured with longitudinal Schottky diagnostics. This method is already successfully used at the Antiproton Decelerator since the commissioning of this machine. The fact that Schottky noise is a statistical phenomenon implies statistical errors of these measurements. Simple analytical formulas describing the statistical error to be expected as a function of the frequency spread of the band considered, the time resolution chosen and the background noise have been derived. On the one hand, low revolution harmonics and, in turn, frequency spread of the band analysed lead to large measurement errors as this situation corresponds to low momentum resolution of the resulting distribution describing the beam. At very large revolution harmonics and, thus, frequency spreads of the band analysed, the measurement error increases again due to additional contributions from the background noise.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB112  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB141 Control and Operation of a Wideband RF System in CERN's PS Booster 4050
 
  • M.E. Angoletta, S.C.P. Albright, A. Findlay, M. Haase, M. Jaussi, J.C. Molendijk, M.M. Paoluzzi, J. Sanchez-Quesada
    CERN, Geneva, Switzerland
 
  A prototype wideband High-Level RF (HLRF) sys-tem based on Finemet metal alloy has been installed in CERN's PS Booster (PSB) Ring 4 in 2012, within the frame of the LHC Injectors Upgrade (LIU) project. A digital Low-Level RF (LLRF) system was used to control the HLRF system to ascertain the capabilities of the combined system, especially under heavy beam loading. The testing campaign was satisfactory and in 2015 the CERN management decided to replace all ferrite-based systems with Finemet ones for the PS Booster restart in 2020. This paper describes the LLRF features implemented for operating the wideband HLRF system and the main beam results obtained. Hints on the LLRF evolution in view of the PSB HLRF renovation are also given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB141  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB142 Initial Beam Results of CERN ELENA's Digital Low-Level RF System 4054
 
  • M.E. Angoletta, S.C.P. Albright, S. Energico, S. Hancock, M. Jaussi, A.J. Jones, J.C. Molendijk, M.M. Paoluzzi, J. Sanchez-Quesada
    CERN, Geneva, Switzerland
 
  The Extra Low ENergy Antiproton (ELENA) decelerator is under commissioning at CERN. This decelerator is equipped with a new digital low-level RF (LLRF) system, in-house developed and belonging to the LLRF family already deployed in CERN's PS Booster and Low Energy Ion Ring (LEIR) synchrotrons. New features to adapt it to the demanding requirements of ELENA's operation include new, low noise ADC daughtercards and a fixed-frequency clocking scheme. This paper gives an overview of the LLRF system; initial beam results are also shown together with hints on the future system upgrade.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB142  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB143 Operational Experience With the New Digital Low-Level RF System for CERN's PS Booster 4058
 
  • M.E. Angoletta, S.C.P. Albright, A. Findlay, S. Hancock, M. Jaussi, J.C. Molendijk, J. Sanchez-Quesada
    CERN, Geneva, Switzerland
 
  The four rings of CERN's PS Booster have been equipped in 2014 with a new digital low-level RF (LLRF) system based upon a new, in-house developed LLRF family. This is a second-generation LLRF family that has been since then deployed on other synchrotrons. The paper provides an overview of the system's commissioning and first years of operation. In particular, an overview is given of the main system features and capabilities, such as beam loops and longitudinal beam blowup implementation. Operational improvements with respect to the previous, analogue digital LLRF are also mentioned, together with the planned system evolution to satisfy new requirements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB143  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB144 The New LEIR Digital Low-Level RF System 4062
 
  • M.E. Angoletta, S.C.P. Albright, A. Findlay, M. Haase, S. Hancock, M. Jaussi, J.C. Molendijk, M.M. Paoluzzi, J. Sanchez-Quesada
    CERN, Geneva, Switzerland
 
  CERN's Low Energy Ion Ring (LEIR) low-level RF (LLRF) system has been successfully upgraded in 2016 to the new digital, LLRF family for frequency-sweeping synchrotrons developed at CERN. For LEIR it implements not only beam loops but also the voltage and phase loops required for the control of two Finemet-based High-Level RF (HLRF) systems. This paper gives an overview of the system and of new requirements implemented, such as the parallel operation of two HLRF systems. Beam results for the 2016 lead ions run are also shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB144  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)