Author: Planche, T.
Paper Title Page
TUPAB022 TRIUMF ARIEL e-Linac Ready for 30 MeV 1361
 
  • S.R. Koscielniak, Z.T. Ang, K. Fong, J.J. Keir, O.K. Kester, M.P. Laverty, R.E. Laxdal, Y. Ma, A.K. Mitra, T. Planche, D.W. Storey, E. Thoeng, B.S. Waraich, Z.Y. Yao, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
 
  Funding: TRIUMF is funded under a contribution agreement with the National Research Council of Canada.
The ARIEL electron linac (e-linac) in its present configuration has a 10 mA electron gun and a single-cavity 10 MeV injector cryomodule followed by the accelerator cryomodule intended to house two 10-MeV-capable SRF cavities. There are momentum analysis stations at 10 MeV and 30 MeV. In October 2014, using a total of two cavities, the e-linac demonstrated 22.9 MeV acceleration. In 2017 an additional SRF cavity was installed in the accelerator cryomodule, thereby completing its design specification; and leading to 30 MeV acceleration capability. The 9-cell 1.3 GHz cavities are a variant of the TESLA type, modified for c.w. operation and recirculation. An unusual feature of the module is the power feed of two cavities by one klystron through a wave-guide type power divider, and closed loop control of the combined voltage from the cavities. Initial operation of the two-cavity control, including power and phase balancing, is reported.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOBB1 Recirculated Electron Beam Photo-Converter for Rare Isotope Production 2526
 
  • A. Laxdal, R.A. Baartman, I.V. Bylinskii, S. Ganesh, A. Gottberg, F.W. Jones, P. Kunz, L.A. Lopera, T. Planche, A. Sen
    TRIUMF, Vancouver, Canada
 
  The TRIUMF 50 MeV electron linac has the potential to drive cw beams of up to 0.5 MW to the ARIEL photo-fission facility for rare isotope science. Due to the cooling requirements, the use of a thick Bremsstrahlung target for electron to photon conversion is a difficult technical challenge in this intensity regime. Here we present a different concept in which electrons are injected into a small storage ring to make multiple passes through a thin internal photo-conversion target, eventually depositing their remaining energy in a cooled central core absorber. We discuss the design requirements and propose a set of design parameters for the Fixed Field Alternating Gradient (FFAG) ring. Using particle simulation models, we estimate various beam properties, as well as the MPS for the electron loss.  
slides icon Slides WEOBB1 [4.650 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEOBB1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)