Author: Piot, P.
Paper Title Page
MOPIK021 Generation of Transversely Segmented Beam Using a Nano-Patterned Photocathode 545
 
  • A. Lueangaramwong, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • G. Andonian
    RadiaBeam, Santa Monica, California, USA
  • P. Piot
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by US Department of Energy (DOE) contract DE-SC0009656 with Radiabeam Technologies and by NSF grant PHY-1535401 with Northern Illinois University.
Plasmonic photocathodes – nano-patterned photocathodes with periodicity comparable to the excitation laser – have demonstrated enhanced quantum efficiency. In the present paper we present numerical simulations of the beam dynamics associated to the emission process from this type of cathodes and to the subsequent acceleration to relativistic energies by combining WARP and IMPACT-T programs. We especially consider the possibility to transversely image the cathode surface at high energy and enable the generation of transversely segment beams.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK022 Experimental Investigation of Field-Emission From Silicon Nano-Cone Cathodes 548
SUSPSIK041   use link to see paper's listing under its alternate paper code  
 
  • A. Lueangaramwong, C. Buzzard, V. Korampally, O. Mohsen, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • S. Chattopadhyay
    Northern Illinois Univerity, DeKalb, Illinois, USA
  • R. Divan
    Argonne National Laboratory, Argonne, Illinois, USA
  • P. Piot
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work is supported by the NSF grant PHY-1535401 with Northern Illinois University
Field emission cathode are capable of forming electron beam with extreme brightness via strong-field excitation from applied electrostatic, or electromagnetic (radiofrequency and laser) fields. Our group, in collaboration with the Argonne Center for Nanoscale Material, has recently developed nanocone cathode. The present paper reports on the experimental characterization of these cathodes both configured as a single-cone emitter or as large arrays of tightly-packed emitter. The tests carried in a diode setup are capable of measuring IV characteristic curves and beam distributions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB122 Experimental Demonstration of Ballistic Bunching with Dielectric-Lined Waveguides at Pitz 2857
 
  • F. Lemery
    University of Hamburg, Hamburg, Germany
  • G.A. Amatuni, B. Grigoryan
    CANDLE, Yerevan, Armenia
  • P. Boonpornprasert, Y. Chen, J.D. Good, M. Krasilnikov, O. Lishilin, G. Loisch, S. Philipp, H.J. Qian, Y. Renier, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • P. Piot
    Fermilab, Batavia, Illinois, USA
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  We report on the experimental demonstration of ballistic bunching of photoinjected, nC-scale electron bunches at the PITZ facility. In the experiment, electron bunches emanating from the photocathode were directly focused into a mm-scale dielectric-lined waveguide. The wakefield excited by the bunch acts back onto itself, leading to an energy modulation, which at a relatively low energy of 6~MeV, is converted into a density modulation before entering the linac  ∼ 1~m downstream. We discuss the basic theory, experimental layout and results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB122  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB123 A Phase Matching, Adiabatic Accelerator 2861
 
  • F. Lemery
    University of Hamburg, Hamburg, Germany
  • K. Flöttmann
    DESY, Hamburg, Germany
  • F.X. Kärtner
    MIT, Cambridge, Massachusetts, USA
  • F.X. Kärtner
    CFEL, Hamburg, Germany
  • P. Piot
    Fermilab, Batavia, Illinois, USA
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Tabletop accelerators are a thing of the future. Reducing their size will require scaling down electromagnetic wavelengths; however, without correspondingly high field gradients, particles will be more susceptible to phase-slippage – especially at low energy. We investigate how an adiabatically-tapered dielectric-lined waveguide could maintain phase-matching between the accelerating mode and electron bunch. We benchmark our simple model with CST and implement it into ASTRA; finally we provide a first glimpse into the beam dynamics in a phase-matching accelerator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB123  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB072 Application of Voronoi Diagram to Mask-Based Intercepting Phase-Space Measurements 3872
 
  • A. Halavanau, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • Q. Gao, J.G. Power, E.E. Wisniewski
    ANL, Argonne, Illinois, USA
  • Q. Gao
    TUB, Beijing, People's Republic of China
  • G. Ha
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • P. Piot
    Fermilab, Batavia, Illinois, USA
 
  Intercepting multi-aperture masks (e.g. pepper pot or multislit mask) combined with a downstream transverse-density diagnostics (e.g. based on optical transition radiation or employing scintillating media) are commonly used for characterizing the phase space of charged particle beams and the associated emittances. The required data analysis relies on precise calculation of the RMS sizes and positions of the beamlets originated from the mask which drifted up to the analyzing diagnostics. Voronoi diagram is an efficient method for splitting a plane into subsets according to the distances between given vortices. The application of the method to analyze data from pepper pot and multislit mask based measurement is validated via numerical simulation and applied to experimental data acquired at the Argonne Wakefield Accelerator facility. We also discuss the application of the Voronoi diagrams to quantify transversely-modulated beams distortion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB073 Magnetized and Flat Beam Experiment at FAST 3876
 
  • A. Halavanau, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • J. Hyun
    Sokendai, Ibaraki, Japan
  • D. Mihalcea, P. Piot, T. Sen, J.C.T. Thangaraj
    Fermilab, Batavia, Illinois, USA
 
  A photocathode, immersed in solenoidal magnetic field, can produce canonical-angular-momentum (CAM) dominated electron beams. Such beams have an application in electron cooling of hadron beams and can also be uncoupled to yield asymmetric-emittance (flat) beams. In the present paper we explore the possibilities of the flat beam generation at Fermilab's Accelerator Science and Technology (FAST) facility linear accelerator. We present optimization of the beam flatness and four-dimensional transverse emittance and investigate the mapping and its limitations of the produced eigen-emittances to conventional emittances using a skew-quadrupole channel. Possible application of flat beams at the FAST facility are also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)