Author: Papash, A.I.
Paper Title Page
TUPAB037 An Optimized Lattice for a Very Large Acceptance Compact Storage Ring 1402
 
  • A.I. Papash, E. Bründermann, A.-S. Müller
    KIT, Karlsruhe, Germany
 
  Combining a circular storage ring and a laser wakefield accelerator (LWFA) might be the basis for future compact light sources and advancing user facilities to different commercial applications. Meanwhile the post-LWFA beam is not directly suitable for storage and accumulation in conventional storage rings. New generation rings with adapted features are required. Different geometries and ring lattices of very large-acceptance compact storage ring operating between 50 to 500 MeV energy range were studied. The main objective was to create a model suitable to store the post-LWFA beam with a wide momentum spread (2% to3%) and ultra-short electron bunches of fs range. The DBA-FDF lattice with relaxed settings, split elements and optimized parameters allows to open the dynamic aperture up to 20 mm while dispersion is limited and sextupole strength is high. The proposed machine model could be a basis for further, more detailed design studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB011 High Order Magnetic Field Components and Non-Linear Optics at the ANKA Storage Ring 2586
 
  • A.I. Papash, E. Blomley, J. Gethmann, E. Huttel, A.-S. Müller, M. Schuh
    KIT, Karlsruhe, Germany
 
  The Karlsruhe Institute of technology operates the 2.5 GeV electron storage ring ANKA as an accelerator test facility and synchrotron radiation source. A superconducting wiggler is installed in a short straight section of the ring where vertical beta-function is large (13 m). The life time of the electron beam was reduced from 15 to 12 hours at a high field level of the wiggler (2.5 T) even though the coherent shift of vertical tune was compensated locally. Computer simulations show the non-linear nature of the effect. The ANKA storage ring operates with strong sextupoles at a positive chromaticity of +2/+6. Even residual octupole components of the wiggler field, set at the tolerance limit of fabrication conditions, could reduce the dynamic aperture for off-momentum particles providing the betatron tune is located in the vicinity of a weak octupole resonance and the chromaticity is high. Also the vertical betatron tune is close to the sextupole resonance Qy=8/3. Large resonance stop-band and proximity of sextupole resonance affect the life time as well. Betatron tunes of ANKA have been shifted away of suspected high-order resonances and beam life time was essentially improved.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK068 Non-Linear Beam Dynamics Studies of the CLIC Damping Wiggler Prototype 3087
 
  • J. Gethmann, A. Bernhard, E. Blomley, E. Huttel, A.-S. Müller, A.I. Papash, M. Schedler
    KIT, Karlsruhe, Germany
  • Y. Papaphilippou, P. Zisopoulos
    CERN, Geneva, Switzerland
  • K. Zolotarev
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: Julian Gethmann acknowledges the support by the DFG-funded Doctoral School Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology
First beam dynamics studies of a damping wiggler prototype for the CLIC damping rings have been carried out at the KIT storage ring. Effects of the 2.9 T superconducting wiggler on the electron beam in the 2.5 GeV standard operation mode have been measured and compared with theoretical predictions. Higher order multipole components were investigated using local orbit bump measurements. Based on these findings the simulation models for the storage ring optic have been adjusted. The refined optics model has been applied to the 1.3 GeV, low-operation case. This case will be used to experimentally benchmark beam dynamics simulations involving strong wiggler fields and dominant collective effects. We present these measurements, comparisons and the findings of the simulations with the updated low-mode optics model.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)