Author: Palmer, R.B.
Paper Title Page
WEPIK049 Overview of the eRHIC Ring-Ring Design 3035
 
  • C. Montag, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, J.M. Brennan, A.V. Fedotov, W. Fischer, W. Guo, Y. Hao, A. Hershcovitch, Y. Luo, F. Méot, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, S. Seletskiy, T.V. Shaftan, V.V. Smaluk, S. Tepikian, D. Trbojevic, E. Wang, F.J. Willeke, H. Witte, Q. Wu
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The ring-ring electron-ion collider eRHIC aims at an electron-ion luminosity in the range from 1032 to 1033cm-2sec-1 over a center-of-mass energy range from 20 to 140GeV. To minimize the technical risk the design is based on existing technologies and beam parameters that have already been achieved routinely in hadron-hadron collisions at RHIC, and in electron-positron collisions elsewhere. This design has evolved considerably over the last two years, and a high level of maturity has been achieved. We will present the latest design status and give an overview of studies towards evaluating the feasibility.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK050 Parameters for eRHIC 3038
 
  • R.B. Palmer, C. Montag
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Requirements for the proposed BNL eRHIC Ring-Ring Electron Ion Collider (EIC) are discussed, together with the dependence of luminosity with the beam divergence and forward proton acceptance. Parameters are given for four cases. The first two use no cooling and could represent a first phase of operation. The next two use strong cooling and increased beam currents. In each case parameters are given that 1) meets the requirement for forward proton acceptance, and 2) has somewhat higher divergences giving somewhat higher luminosity.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA151 The eRHIC Interaction Region Magnets 3624
 
  • B. Parker, R.B. Palmer, H. Witte
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Designing eRHIC Interaction Region (IR) magnets faces special Machine Detector Interface challenges. Based upon HERA-II experience, a fundamental consideration is to avoid excessive background due to synchrotron radiation striking masks and septa in the vicinity of the experiment. Circumventing such radiation is problematic because the colliding beams have quite different rigidities; we must shield the e-beam from hadron IR magnet multi-tesla coil fields. On the outgoing-hadron, i.e. forward IR side, this difficulty is compounded by needing large hadron beam apertures to enable downstream separation and experimental detection of a mix of scattered and produced forward going charged particles and (in the electron-ion case) a wide-spread cone of neutrons. Here we present superconducting magnet designs with combinations of active and passive shielding and Sweet Spot coils to meet these requirements along with the design of a superferric spectrometer dipole, with an integrated cancel coil, that extends the forward experimental acceptance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA151  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)