Author: Luo, T.H.
Paper Title Page
MOPIK019 Upgrade Options Towards Higher Fields and Beam Energies for Continuous-Wave Room-Temperature VHF RF Guns 542
 
  • F. Sannibale, J.M. Byrd, D. Filippetto, M.J. Johnson, D. Li, T.H. Luo, C.E. Mitchell, J.W. Staples, S.P. Virostek
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231
Science demand for MHz-class repetition rate electron beam applications such as free electron lasers (FELs), inverse Compton scattering sources, and ultrafast electron diffraction and microscopy (UED/UEM), pushed the development of new gun schemes that could generate high brightness beams at such high rates. At the Lawrence Berkeley Lab (LBNL), we proposed a new concept room-temperature RF gun resonating in the VHF frequency range (30-300 MHz) capable of operating in continuous wave mode at the fields required for high-brightness performance. A first VHF-Gun was constructed and tested in the APEX facility at LBNL, which successfully demonstrated all design parameters and the generation of high brightness electron beams. A second version of the APEX VHF-Gun is being built at LBNL for the LCLS-II, the new SLAC X-ray FEL. Recent studies showed that a proposed LCLS-II upgrade and UED/UEM applications would greatly benefit from an increased gun brightness obtained by raising the electric field at the cathode and the beam energy at the gun exit. In this paper, we present and discuss possible upgrade options that would allow extension of the VHF-Gun performance towards these new goals.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB121 Bench Measurements and Beam Tests of a Prototype Stripline Kicker for Swap-Out Injection in the ALS-U 1599
 
  • S. De Santis, J.M. Byrd, T.H. Luo, G.C. Pappas, C. Steier, C.A. Swenson, W.L. Waldron
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The ALS upgrade to a diffraction-limited light source (ALS-U Project) relies on a swap-out injection scheme, where the circulating current is maintained constant by injecting on-axis fresh bunch trains, replacing old trains, which are simultaneously extracted. The realization of a stripline kicker to perform such an operation presents several challenges in terms of optimal matching to the pulser, contributions to the beam coupling impedance, and dissipation of the power deposited by the stored beam. To test our design choices for the ALS-U kicker, we have built and installed on the ALS a kicker with characteristics similar to the design for the ALS-U, as the more challenging aspects of the project are concerned. In particular, while the small distance between stripline electrodes reduces the required pulser voltage, the extreme proximity of the circulating beam requires a careful evaluation of the interaction between beam and kicker. In this paper we present the first measurements with beam, after the test kicker installation, together with the results of bench measurements performed on a cold model and computer simulations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB121  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB103 On-Axis Swap-Out Injection R+D for ALS-U 2821
 
  • C. Steier, A. Anders, S. De Santis, T.H. Luo, T. Oliver, G.C. Pappas, C. Sun, C.A. Swenson, W.L. Waldron
    LBNL, Berkeley, California, USA
 
  Funding: This work is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The ALS-U upgrade promises to deliver diffraction limited performance throughout the soft x-ray range by lowering the horizontal emittance by a factor of 40 compared to the current ALS. One of the consequences of producing a small emittance is a small dynamic aperture, although the momentum acceptance will remain large enough for acceptable beam lifetime. To overcome this challenge, ALS-U will use on-axis swap-out injection to exchange bunch trains between the storage ring and an accumulator ring. On-axis swapout injection requires special fast pulsers and state-of-the-art stripline kicker magnets. This paper reports on the results of the on-axis swap-out injection R&D program, including beam tests of a complete stripline kicker/pulser system on the current ALS and the development of methods to speed up beam based commissioning after the upgrade shutdown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB103  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB104 Status of the Conceptual Design of ALS-U 2824
 
  • C. Steier, A.P. Allézy, A. Anders, K.M. Baptiste, J.M. Byrd, K. Chow, G.D. Cutler, S. De Santis, R.J. Donahue, R.M. Duarte, J.-Y. Jung, S.C. Leemann, M. Leitner, T.H. Luo, H. Nishimura, T. Oliver, O. Omolayo, J.R. Osborn, G.C. Pappas, S. Persichelli, M. Placidi, G.J. Portmann, S. Reyes, D. Robin, F. Sannibale, C. Sun, C.A. Swenson, M. Venturini, W.L. Waldron, E.J. Wallén, W. Wan
    LBNL, Berkeley, California, USA
 
  Funding: This work is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The ALS-U upgrade promises to deliver diffraction limited performance throughout the soft x-ray range by lowering the horizontal emittance to about 50~pm resulting in 2-3 orders of brightness increase for soft x-rays compared to the current ALS. The design utilizes a multi bend achromat lattice with on-axis swap-out injection and an accumulator ring. One central design goal is to install and commission ALS-U within a short dark period. This paper summarizes the status of the conceptual design of the accelerator, as well as some results of the R&D program that has been ongoing for the last 3 years.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB104  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK106 Impedance and Collective Effects for the Advanced Light Source Upgrade at LBNL 3192
 
  • S. Persichelli, J.M. Byrd, S. De Santis, D. Li, T.H. Luo, C. Steier, M. Venturini
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
The upgrade of the Advanced Light Source (ALS-U) consists of a multiband achromat ultralow emittance lattice for the production of diffraction-limited soft x-rays. A very important issue for ALS-U is represented by instabilities induced by wakefields, that may limit the peak current of individual bunches and the total beam current. In addition, vacuum chamber apertures of few millimeters, that are a key feature of low-emittance machines, can result in a significant increase in the Resistive Wall (RW) impedance. In this paper we present progress on establishing short range wakefield model for ALS-U and evaluating the impact on the longitudinal and transverse single-bunch dynamics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK118 Final Assembly and Testing of MICE RF Modules at LBNL 4377
 
  • T.H. Luo, A.R. Lambert, D. Li, S.P. Virostek, J.G. Wallig
    LBNL, Berkeley, California, USA
  • T.G. Anderson, A.D. Bross, D.W. Peterson
    Fermilab, Batavia, Illinois, USA
  • M.A. Palmer
    BNL, Upton, Long Island, New York, USA
  • Y. Torun
    Illinois Institute of Technology, Chicago, Illlinois, USA
 
  Funding: Work supported by the Office of Science, U.S. Department of Energy under DOE contract number DE-AC02-05CH11231
The international Muon Ionization Cooling Experiment aims to demonstrate the transverse cooling of a muon beam by ionization interaction with absorbers and re-acceleration in RF cavities. The final MICE cooling channel configuration has two RF modules, each housing a 201 MHz RF cavity to compensate the longitudinal energy loss in the absorbers. Two RF modules have been assembled and tested at LBNL. This paper reports the final assembly work, as well as the vacuum test and low level RF measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK118  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)