Author: Eldred, J.S.
Paper Title Page
THPVA031 Beam Tests of Diamond-Like Carbon Coating for Mitigation of Electron Cloud 4497
 
  • J.S. Eldred, M. Backfish, C.-Y. Tan, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
  • S. Kato
    KEK, Ibaraki, Japan
 
  Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Our results evaluate the efficacy of a diamond-like carbon (DLC) coating for the mitigation of electron in the Fermilab Main Injector. The interior surface of the beampipe conditions in response to electron bombardment from the electron cloud and we track the change in electron cloud flux over time in the DLC coated beampipe and uncoated stainless steel beampipe. The electron flux is measured by retarding field analyzers placed in a field-free region of the Main Injector. We find the DLC coating reduces the electron cloud signal to roughly 2\% of that measured in the uncoated stainless steel beampipe.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA032 Space-Charge Simulation of Integrable Rapid Cycling Synchrotron 4501
 
  • J.S. Eldred, A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  Integrable optics is an innovation in particle accelerator design that enables strong nonlinear focusing without generating parametric resonances. We use a Synergia space-charge simulation to investigate the application of integrable optics to a high-intensity hadron ring that could replace the Fermilab Booster. We find that incorporating integrability into the design suppresses the beam halo generated by a mismatched KV beam. Our integrable rapid cycling synchrotron (iRCS) design includes other features of modern ring design such as low momentum compaction factor and harmonically canceling sextupoles. Experimental tests of high-intensity beams in integrable lattices will take place over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)