Author: Craievich, P.
Paper Title Page
MOPAB044 X-Band TDS Project 184
 
  • B. Marchetti, R.W. Aßmann, B. Beutner, J. Branlard, F. Christie, R.T.P. D'Arcy, W. Decking, U. Dorda, J. Herrmann, M. Hoffmann, M. Hüning, O. Krebs, G. Kube, S. Lederer, F. Ludwig, F. Marutzky, D. Marx, J. Osterhoff, I. Peperkorn, S. Pfeiffer, F. Poblotzki, J. Rönsch-Schulenburg, J. Rothenburg, H. Schlarb, M. Scholz, S. Schreiber, M. Vogt, A. Wagner, T. Wilksen, K. Wittenburg
    DESY, Hamburg, Germany
  • M. Bopp, H.-H. Braun, P. Craievich, M. Pedrozzi, E. Prat, S. Reiche, K. Rolli, R. Zennaro
    PSI, Villigen PSI, Switzerland
  • N. Catalán Lasheras, A. Grudiev, G. McMonagle, W. Wuensch
    CERN, Geneva, Switzerland
 
  Based on the success of the X-Band Transverse Deflecting Structure (TDS) diagnostic at LCLS*, a collaboration between DESY, PSI and CERN has formed with the aim of developing and building an advanced modular X-Band TDS system. The designed TDS has the new feature of providing variable polarization of the deflecting field**. The possibility of changing the orientation of the streaking field of the TDS to an arbitrary azimuthal angle allows for 3D characterization of the phase space using tomographic methods***. Moreover the complete 6D characterization of the beam phase space is possible by combining this technique with quadrupole scans and a dipole spectrometer. As this new cavity design requires very high manufacturing precision to guarantee highest azimuthal symmetry of the structure to avoid the deterioration of the polarization of the streaking field, the high precision tuning-free assembly procedures developed at PSI for the SwissFEL C-band accelerating structures will be used for the manufacturing****. The high-power rf system is based on the CERN-based X-band test stands. We summarize in this work the status of the projects and its main technical parameters.
* C. Behrens et al. , Nat. Comm. 4762 (2014).
** A. Grudiev, CLIC-note-1067 (2016).
*** D. Marx et al., contribution to this conference proceedings.
**** U. Ellenberger et al., FEL 2013, TUPS017.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB045 Reconstruction of the 3D Charge Distribution of an Electron Bunch Using a Novel Variable-Polarization Transverse Deflecting Structure (TDS) 188
 
  • D. Marx, R.W. Aßmann, U. Dorda, U. Dorda, B. Marchetti
    DESY, Hamburg, Germany
  • P. Craievich
    PSI, Villigen PSI, Switzerland
  • A. Grudiev, A. Grudiev, A. Grudiev
    CERN, Geneva, Switzerland
 
  A TDS is a well-known device for the characterization of the longitudinal properties of an electron bunch in a linear accelerator. So far, the correlation of the slice properties in the horizontal/vertical planes of the electron bunch distribution has been characterized by using a TDS system deflecting in the vertical/horizontal directions respectively and analysing the image on a subsequent screen*. Recently, an innovative design for a TDS structure has been proposed, which includes the possibility of continuously varying the angle of the transverse streaking field inside a TDS structure**. This allows the beam distribution to be characterized in all transverse directions. By collecting measurements of bunches streaked at different angles and combining them using tomographic techniques, it is possible to retrieve 3D distributions of the charge density. In this paper, a method is proposed and simulation results are presented to show the feasibility of such an approach at the upcoming accelerator R&D facility, SINBAD, at DESY***.
* M. Roehrs et al., Phys. Rev. ST Accel. Beams 12, 050704 (2009).
** A. Grudiev, Report No. CLIC-Note-1067, 2016.
*** B. Marchetti et al. X-band TDS project contribution to these conference proceedings.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB102 Compact Electron RF Travelling Wave Gun Photo Injector 1550
 
  • R. Zennaro, P. Craievich, C.P. Hauri, L. Stingelin, A. Trisorio, C. Vicario
    PSI, Villigen PSI, Switzerland
 
  This paper reports on studies of a travelling wave photo gun as multipurpose device. The gun would be a cheap and compact alternative to thermionic guns with a bunching system or a standing wave photo injector gun. It allows one to reach much larger beam energies at the gun output. It can provide a beam with energy of up to 50 MeV and several hundred pC charge with low emittance and short bunch length. The laser system is a compact, industrial grade system with high MTBF and low maintenance cost. The gun design is based on the two-meter accelerating structures installed in SwissFEL, only the input coupler has been modified to accommodate the cathode. The gun is powered by a C-band (5.712 GHz) modulator-klystron system, identical to those of SwissFEL. The input coupler is a simple double feed coupler and it has been designed to increase the electric field enhancement at the cathode surface to improve the emittance. The first three accelerating cells have been readjusted in length in order to get the proper phase advance and synchronism with the beam. The remaining 110 accelerating cells and the output coupler follows the original design of the accelerating cavities for SwissFEL.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB102  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)