Author: Choi, B.H.
Paper Title Page
THPIK073 Development of RFQ for BNCT Accelerator 4260
 
  • J. Bahng
    Kyungpook National University, Daegu, Republic of Korea
  • B.H. Choi
    IBS, Daejeon, Republic of Korea
  • B.H. Choi, D.S. Kim
    DAWONSYS, Ansan-si, Republic of Korea
  • E.-S. Kim
    Korea University Sejong Campus, Sejong, Republic of Korea
 
  A accelerator for Boron Neutron Capture Therapy (BNCT) based on proton linac has been developed as a domestic project. The accelerator system consists of duo plasmatron as an ion source, low energy beam transport (LEBT), radio frequency quarupole (RFQ) accelerator, drift tube linac (DTL). In order to achieve beam power of 50 kW, the required beam intensity and energy are 50 mA and 10 MeV, respectively. Since high duty rate provides high efficient medical treatment, the design of the cw RFQ has been investigated to accelerate proton beam from 50 keV to 3 MeV with beam intensity of 60 mA. In this paper, beam dynamics and design of the RFQ are presented in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)