10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005, PO2.089-5 (2005)

NATIVE JAVA IMPLEMENTATION OF CHANNEL ACCESS FOR
EPICS

M. Sekoranja
Cosylab, Ljubljana, Slovenia

ABSTRACT

Channel Access for Java (CAJ) [1] is a 100% pure Java CA client library. It was written as a result of
detailed analysis of existing CA library to provide better stability opposed to the current JCA JNI
implementation, while keeping the JCA API [2] for backward compatibility. This was achieved by
minimizing code complexity by clean OO design and profound testing during the whole development
cycle. Following the latest design patterns and technology, CAJ is also designed for performance.
Some performance measurements will be shown.

WHAT IS CAJ?

EPICS (Experimental Physics and Industrial Control System) uses CA (Channel Access) protocol [3]
as a standardized communication path to a field(s) within a record (representation of a single value,
also called process variable) in any IOC (Input/Output Controller) database. EPICS base provides
C++ implementation of CA library. Due to popularity of Java programming language support for it
was implemented using Java Native Interface (JNI) technology which allows calls to a native C++ CA
library. JNI solution implements/plugs into a set of interfaces called Java Channel Access v2 (JCA2).
However, JNI solution was quite unstable under heavy load and it is not easily distributable
comparing to platform-independed Java code — native C++ CA library has to be build for each
(version of) operating system. This led to implementation of Channel Access in Java (CAJ) - a CA
client library completely written in Java. CAJ was written as a result of detailed analysis of existing
C++ CA library to provide better stability and performance opposed to the current JCA JNI
implementation. Since it was written from scratch CAJ code is clean, follows OO design and uses lots
of design patterns. It also implements/plugs into JCA2 interfaces which makes migration from JNI to
CAJ transparent.



10th ICALEPCS 2005; M.Sekoranja et al. : Native Java implementation of Channel Access for EPICS 20f3

BASIC CA PROTOCOL DESCRIPTION

The goal of CA is to provide remote access to records and fields managed by 10C, including search
and discovery of hosts and minimal flow control. Protocol itself is designed to provide minimal
overhead and maximize network throughput for transfer of large number of small data packets.
Additionally, implementation overhead of the protocol can be kept very small, to allow operation with
limited resources.

All commands and events in CA are encapsulated in predefined messages, which can be sent in one of
three forms:

o Asabeacon, which requires no confirmation. Used for host discovery and keep-alive
notification.

o As arequest/response pair. Most commands use this method.

o Asa subscriber notification, where the client registers with the host and receives
updates. Event notification uses this method to report value changes.

Communication between server and client is performed by sending command messages over UDP and
TCP. Client will use UDP to search for hosts and PVs (process variables), server will use them to
notify its startup and shutdown. Once client requests a specific PV (by specifying its name), UDP
message will be broadcast to either a subnet or a list of predefined addresses, and the server which
hosts requested PV will respond.

Data exchange between client and server is performed over TCP. After locating the PV, the client will
establish a TCP connection to the server. If more that one PV is found to be on the same server, client
will use existing TCP connection. Reusable TCP connection between client and server is called
Virtual circuit. Channel Access protocol is designed to minimize resources used on both client and
server. Virtual circuits minimize number of TCP connections used between clients and servers. Each
client will have exactly one active and open TCP connection to an individual server, regardless of how
many channels it accesses over it. This helps to ensure that servers do not get overwhelmed by too
many connections.

Once a virtual circuit is established or already available, channels can be created to PVs.
DESIGN AND IMPLEMENTATION

CAlJ was implemented using the latest concurrent, network communication design patterns used to
implement efficient event demultiplexing, minimize context switching and maximize CPU cache
affinity (Leader/Followers design pattern [4]). Asynchronous I/O is used (Java NIO package) [5] to be
able to handle large number of servers using as minimal system resources as possible. New Linux 2.6
kernel 'epoll-based selector' is also supported. Due to OO design light CAJ version is possible (one
communication thread), convenient for light CA clients (handhelds).

Since CA uses UDP to search for channels, congestion control needs to be implemented to avoid
congestion (UDP does not provide it, but TCP does). CAJ has implemented ‘TCP Reno’-like UDP
congestion control.

Profound testing was enforced during the whole development cycle (~ 90% of code coverage!) - only
a few bugs were found after first public release.



10th ICALEPCS 2005; M.Sekoranja et al. : Native Java implementation of Channel Access for EPICS 30f3

PERFORMANCE TESTS

Some tests where performed to compare CAJ with the JNI implementation. They showed much better
performance of CAJ.

CAJ vs. JCA JNI/Thread Safe comparison

5000
4500 |
4000 VV 77
3500 .‘ ’
3000 -7
2500
: — et
1500 =

1000 —
K —

—— e

s 4

k4

T T T 1
10000 sync get-s 10000 async get-s 10000 (no bulk) sync get- 10000 (no bulk) async
s get-s

——CAJ —=_JNI
Tests where performed with the client on the same host as server using Pentium IV 1.6GHz, 1GB

RAM, Red Hat 9. Note that these are only synthetic performance tests and do not reflect performance
in practice!

ACKNOWLEDGEMENTS

I would like to thank DLS (M. Heron) and DESY (M. Clausen) for founding the development of CAJ.

REFERENCES

[1] http://caj.cosylab.com/

[2] http://jca.cosylab.com/

[3] http://epics.cosylab.com/cosyjava/JCA-Common/Documentation/CAproto.html
[4] http://deuce.doc.wustl.edu/doc/pspdfs/If.pdf

[5] http://java.sun.com/j2se/1.4.2/docs/guide/nio/



