
Implementation of an EPICS IOC on an Embedded Soft Core Processor
Using Field Programmable Gate Arrays 1

Douglas Curry, Alicia Hofler, Hai Dong, Trent Allison, Curt Hovater, Kelly Mahoney
Jefferson Lab, Newport News, USA

Abstract
At Jefferson Lab, we have been evaluating soft core processors running an EPICS IOC over

µClinux on our custom hardware. A soft core processor is a flexible CPU architecture that is
configured in the FPGA as opposed to a hard core processor which is fixed in silicon. Combined with
an on-board Ethernet port, the technology incorporates the IOC and digital control hardware within
a single FPGA. By eliminating the general purpose computer IOC, the designer is no longer tied to a
specific platform, e.g. PC, VME, or VXI, to serve as the intermediary between the high level controls
and the field hardware. This paper will discuss the design and development process as well as
specific applications for JLab’s next generation low-level RF controls and Machine Protection
Systems.

Introduction
At present, to be accessible to the accelerator’s distributed control system, our field hardware

must be designed to operate with a VME or VXI based single board computer Input/Output controller
(IOC). Frequently, this requires long cable pulls and in some cases a new VME crate installation.
During the initial design cycle, typically we must choose between the VME platform, serial
communication, or blind stand-alone units. Stand-alone units provide no feedback to the control room
and there is no convenient way to verify that the devices are functioning correctly. Serial devices are
severely band limited and require expensive serial interface equipment when the standard IOC ports
have been fully utilized. The VME based systems are expensive and often do not accommodate
available space constraints. The ability to integrate the IOC directly into our custom hardware
provides enormous flexibility and provides significant enhancements to our operating capabilities.

Field Programmable Gate Arrays (FPGAs) are very attractive for implementing digital
designs. They have high component counts and are relatively low cost. Their highly configurable
platform provides enormous design flexibility, allowing changes to take place during the development
process and even well after the board design has been completed. Typically modern digital designs
are generated and simulated using a standardized hardware description language such as VHDL or
Verilog, synthesized, and then routed for a particular device.

Generally, embedded systems follow the master/slave approach to integrating system designs.
However, with the advent of soft core processors, an FGPA can host the application logic and the
processor core running a fully featured operating system within a single package. Embedding the
processor core within the logic fabric offers tighter integration with the application design logic and
greater flexibility in the overall system architecture, and, in many cases, it is expected to have higher
performance by avoiding master-slave communication bottlenecks [1].

Occasionally our equipment must be installed and operated in radiation environments in order
to support end-station experiments and accelerator operations. Therefore it is reasonable to expect
single event upsets (SEUs) in the configuration memory of the FPGA [2]. Modern FPGA families
include the ability to perform CRC checks on the configuration memory while the device is in
operation [3]. The device can be set up to reconfigure itself after the detection of a soft error if
desired. Reconfiguration times are fairly quick on the order of a few milliseconds. It should be noted
that device operation is unavailable during this period of time. However, the overall benefit provides
significant advantages over manually resetting the device especially when it is located in a controlled
environment.

1 This work is supported by DOE contract DE-AC05-84ER40150 Modification No. M175, under which the
Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator
Facility.

10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005, PO2.055-4 (2005)

Soft Core Processors
Soft core processors differ from fixed processor cores in the way that they are implemented.

Soft cores are configured to meet an application’s needs by using an interface provided by the FPGA
vendor, adding performance features and peripherals as required by the end user. The “final” core is
generated in either VHDL or Verilog and can be targeted towards any modern FPGA family. Once an
FPGA is programmed with the core, the architecture itself is fixed. Altera and Xilinx both provide
soft core processors that target their FPGA families and take full advantage of a device’s enhanced
features such as embedded multipliers and memory blocks.

The Altera NiosII soft core processor is a 32-bit RISC architecture that supports separate
instruction and data buses, therefore classifying it as a Harvard style architecture [4]. There are 3
different implementations a user can choose from. Starting with the most basic core, the NiosII/e
“economy” version is a single staged pipeline with no instruction or data cache. This core executes a
single instruction at a time making branch prediction hardware unnecessary and the core therefore
much less complicated to implement requiring a minimal amount of FPGA resources. This core
trades off FPGA resources at a significant cost in performance. Altera’s performance core, the
NiosII/f “fast” version is a 6 stage pipeline with dynamic branch prediction, user defined instruction
and data cache sizes, and an ALU that can take advantage of the internal multiplier blocks. This core
provides the best performance at the cost of additional resources.

It is not necessary to build new cores for each design. The “final core” can be ported to
multiple designs and any of the modern Altera FPGA families. After a core is defined, it is easily
integrated with the application logic, synthesized, and routed for the target device.

µClinux
Linux is a fully functional modular operating system which makes it extremely scalable by

removing utility programs, tools, and other system services that are not needed in an embedded
environment [5]. Running a fully featured operating system over our custom hardware provides
multiple advantages over single threaded operating environments. A Linux operating system provides
a platform that supports remote logins, the ability to execute user programs and accelerator distributed
control system applications, network file system (NFS) access, as well as a simple web server if
desired.

Currently, the NiosII architecture does not include a memory management unit (MMU). This
requires the use of an operating system such as µClinux. µClinux is a port of the Linux kernel that
supports embedded processors lacking an MMU. From the application programming perspective, it
offers an interface very similar to a standard Linux system.

EPICS
The Experimental Physics and Industrial Control System (EPICS) is used extensively

throughout the Jefferson Lab accelerator and experimental end-stations [6]. A typical low-level
device control EPICS application at Jefferson Lab resides on a VME based IOC running vxWorks.
With the EPICS IOC environment running directly on our custom hardware, we gain tremendous
flexibility in our board designs and their portability. We are no longer fixed to VME or VXI board
sizes, so the final printed circuit board can be built to accommodate a custom chassis or frame size
that is dictated by the system requirements or available space constraints as opposed to the accelerator
control system hardware environment. The details of how to communicate with the device almost
becomes a moot point in the design process.

The initial cross-compiling of EPICS for µClinux at Jefferson Lab was done using the cygwin
environment over Windows XP [7]. Cygwin is a port of the GNU development environment for
Microsoft Windows. However, Altera’s development tools are also supported for Linux, and EPICS
builds for µClinux should also compile in this environment as well.

Custom Hardware
Setting up a custom hardware design to accommodate the embedded system requires only a

minimal amount of board real-estate and components. A fully functioning Nios II processor running
on our custom hardware at Jefferson Lab only requires the addition of SDRAM, Flash, and Ethernet
controller hardware. With any system, the SDRAM is required to run the operating system, any user
programs, the EPICS IOC environment and low level device control applications, and the read/write
portion of the file system. The Flash provides permanent storage for the Linux kernel, file system,

10th ICALEPCS 2005; D. Curry, A. Hofler, H. Dong, T. Allison, J. Hovater, K. Mahoney et al. : Implementa... 2 of 4

and any user applications. During initial power up, the kernel is loaded from the Flash and executes in
the SDRAM. The Ethernet controller and RJ-45 connector establish the connection to the local area
network. Any EPICS files required to operate the IOC should be loaded from the network file system
to ensure proper file revisions are being utilized.

Nios II cores have been built and tested for our new low level RF control module using
Altera’s EP1S20 Stratix FPGA, and the machine protection analog and digital I/O module using
Altera’s EP2C35 Cyclone II FPGA. The Nios II cores consume on average about 5 thousand logic
elements, which is approximately 15 to 25% of the FPGA’s resources [8][9].

Figure 1. Jefferson Lab’s Machine Protection Analog and Digital I/O Module.

Summary
Running an EPICS IOC directly over our custom hardware provides tremendous design

flexibilities by allowing us to focus our attention on the problem to be solved without adding
additional constraints of how to communicate and transmit data to or from the device. With the
integrated 10/100 Ethernet controller hardware there is sufficient band-width and it provides a popular
platform from which we can communicate with our custom hardware. The use of an embedded IOC
within the FPGA fabric simplifies board designs by eliminating the typical master/slave design
approach and only requires the addition of a few extra components.

New boards being developed at Jefferson Lab already include the peripherals to accommodate
the Nios II architecture. By adding a daughter card populated with Ethernet control hardware, the
machine protection analog and digital I/O module shown in figure 1 is fully capable of running an

10th ICALEPCS 2005; D. Curry, A. Hofler, H. Dong, T. Allison, J. Hovater, K. Mahoney et al. : Implementa... 3 of 4

EPICS IOC. SDRAM and Flash memory is already incorporated as part of the standard configuration
of the main board design. The new low-level RF control module currently under development at
Jefferson Lab is also built with the necessary hardware to support an embedded EPICS IOC. Both of
these designs have been successfully configured with the Nios II processor and have been running
µClinux for some time. The processor core and operating system are proving to be very stable and
reliable platforms.

We have also cross-compiled EPICS for µClinux and are presently in the beginning stages of
executing and troubleshooting embedded IOCs on the Nios II architecture.

References
[1] J.A. Williams and N.W. Bergmann “Reconfigurable Linux for Spaceflight Applications,”

MAPLD International Conference, 2004
[2] D.E. Johnson, K.S. Morgan, M.J. Wirthlin, M.P. Caffrey, P.S. Graham “Detection of

Configuration Memory Upsets Causing Persistent Errors in SRAM-based FPGAs,” MAPLD
International Conference, 2004

[3] Altera “Error Detection Using CRC in Altera FPGA Devices,” Altera Corporation, July 2004,
Version 1.0

[4] Altera “Nios II Processor Reference handbook,” Altera Corporation, May 2005, Version 5.0.0
[5] M. Hennerich, J Hennerich “uClinux as an Embedded OS on an Embedded Processor,”

Analog Devices Inc. 2004
[6] L.R. Daliesio (LANL), M.R. Kraimer (ANL), A.J. Kozubal (LANL) “EPICS Architecture,”

MS H820, Los Alamos National Laboratory, Los Alamos NM, Argonne National Laboratory,
Argonne IL, September 1993.

[7] D. Curry, A. Hofler “Compiling EPICS for uClinux targeting the Nios II architecture,”
September 2005s

[8] Altera “Stratix Architecture,” Altera Corporation, July 2005
[9] Altera “Cyclone II Architecture,” Altera Corporation, July 2005

10th ICALEPCS 2005; D. Curry, A. Hofler, H. Dong, T. Allison, J. Hovater, K. Mahoney et al. : Implementa... 4 of 4

