10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005, WE4A.2-50 (2005)

A GENERIC SOFTWARE INTERFACE SIMULATOR FOR ALMA
COMMON SOFTWARE

D. Fugaté G. ChiozZ, A. Caprorf, B. Jerarfh H. Sommef; S. Harrington
University of Calgary, Calgary, Alberta, Canad&uropean Southern Observatory, Garching,
Germany; National Radio Astronomy Observatory, Socorro, Nésxico, United States of America

ABSTRACT

The generic software interface simulator framewrkAtacama Large Millimeter Array (ALMA)
Common Software (ACS) provides ALMA developers vaih easy means to create and configure the
behaviour of interfaces that have been definedguSiommon Object Request Broker Architecture
(CORBA) Interface Definition Language (IDL). ACSrmists of a set of application frameworks built
on top of CORBA and provides the glue which bintlsep ALMA software subsystems together [7].
In short, ACS provides an implementation of the porent-container design pattern via CORBA.
Using the simulation framework, one can chooseédlgfine the behaviour of a simulated component
by embedding simple Python commands within a sectbthe XML-based ACS configuration
database (CDB). The option to configure simulatechmonents’ behaviour at run-time is also a
possibility using a provided graphical user inteefdGUI) or application programming interface (API)
executed within the context of an interactive PgtBession. Additionally, if the means above hawe no
been utilized to setup the components’ behaviow ftamework will dynamically provide an
implementation of the entire component with a randed behaviour. This framework is especially
useful to ALMA developers for two reasons. On oide st allows developers to test their own
component, which is dependent upon other typesoafponents that have been defined via IDL
interfaces, but not yet implemented. On the otide this tool has proven itself to be quite valeabl
because it allows developers to connect clientdh ag graphical user interfaces to (simulated)
components encapsulating hardware devices. Notaamythe physical hardware devices be absent in
this type of scenario, but the software represgritie hardware need not be available either. The en
result here is that clients and components can éeloped and tested in parallel completely
independent of each other. This paper discussedesbign, implementation, and current usage of the
simulator framework within ALMA software as well &gure improvements to be made.

INTRODUCTION

ALMA is an international project to build the lasjeand most sensitive millimetre wavelength
telescope in the world at Llano de Chajnantor, €hil

ALMA Common Software

ACS is a software infrastructure for the developmen distributed systems based on the
component/container paradigm and also includesrgkparpose utility libraries [4]. ACS is being
developed primarily for the ALMA collaboration taqvide a common and unifying infrastructure
used by all partners and across all layers of tstem. The usage of ACS extends from high-level
applications such as the Observation Preparatiohtfiat will run on the desks of astronomers down
to the Control Software domain. From a system pamtspe, ACS provides the implementation of a set
of design patterns and services that make the wkidiéA software uniform and maintainable. From
the perspective of an ALMA developer, it providefiandly programming environment in which the
complexity of the CORBA middleware and other lilgaris hidden and coding is drastically reduced.

Component/Container Background

As mentioned previously, ACS is based on the coraptoontainer design pattern [5]. For those
unfamiliar with the component/container model, dsfined as follows: a component is a piece of
software that “lives” within a container yet is depled from the container. The container manages
the lifecycle of components and provides them \&ittet of common container services. Examples of



10th ICALEPCS 2005; D. Fugate, G. Chiozzi, A. Caproni, B. Jeram, H. Sommer, S. Harrington et al. : A gen... 20f6

the component/container design pattern are Ensergiava Beans (EJB), CORBA Component Model,
and Microsoft .Net technologies.

The ACS group has implemented this model entirelORBA using IDL and provides a complete
implementation of the container. Additionally, ACfas implemented a base component interface
leaving other ALMA developers to simply extend thaslding methods useful to what they're doing
along the way. ThesACSComponerderived IDL interfaces make up the core of ALMAfts@re
functionality and are shared between subsystemanfall too brief example, one container deployed
on a PC could have a scheduler component usedherdgie observations and an antenna mount
component used to move the antenna within it:

i The implementation of the Scheduler IDL interface and
@definition of the interface itself is all that ALMA developers
iare required to do. ACS provides the rest of the
linfrastructure.

/I;
\,_

Implements

-® Scheduler
Stubs
Implements
Mount
Stubs

|

d

e »

L L

Implementation of ACS Container

Figure 1: High-level overview of the ACS contaimerhponent model within ALMA software

SIMULATOR NECESSITY

In September 2003, during the normal ALMA softwesgiew process, we came to the conclusion
that it was necessary to make available to theystdasis a simulation framework. The main reason for
this was to support the Integration, Testing, ang®rt (ITS) team, responsible for the periodic
release of the integrated ALMA software. Essentiaur development is iterative and at any
intermediate integration some pieces of code dmutieid by the various subsystems are only partially
implemented. It also happens that the intermediatie does not perform according to specifications.
It is therefore very difficult to get the integretéout partial) system working. It is also veryfididilt to
identify the subsystems responsible for bugs andkwvaoound them to proceed with the integration
tests. It would have been much quicker to get tirapiete system exercised if the capability to fake
the missing software functionality existed.



10th ICALEPCS 2005; D. Fugate, G. Chiozzi, A. Caproni, B. Jeram, H. Sommer, S. Harrington et al. : A gen... 30f6

Due to the fact that only IDL interfaces can bensbkg clients of components and not the actual
implementations, we concluded that the most effectneans of simulation for ALMA is at the
component level. That is, it should be possiblegecify to the container that the implementatiarefo
given component is a simulated component factolgo Abecause of the very nature of CORBA and
IDL interfaces, clients using the component willvee know they are not using the real deal.
Component implementations are hot-swappable witilerACS framework.

REQUIREMENTS

During the ACS development cycle in which the saboi framework was created, concrete
requirements came in and these were incorporatedtie design:

* The simulator must be able to generate completdemmgntations of all IDL methods and
attributes without input from the end-user.

« Enumerations, used largely by the Control subsydterspecify hardware states, will be fully
supported.

« If an interface defines a CORBA Object attributeaamethod that returns a reference to another
CORBA Object, the simulator should then create @@RBA Object and be responsible for its
lifecycle. Nil references are unacceptable.

* A simulated component should behave in the samenenaas a real component. That is,
simulated components shall have access to the inentservices and implement the non-IDL
lifecycle methods. Additionally the simulator shadultake advantage of real object
implementations where applicable.

» Users will have the option to specify a timeoutueafor methods. When the simulated method is
invoked it will sleep for a period of time definbg the timeout and then return control.

» Read/write attributes should have some form of “mmgfhto store the value in if it is being set.

* It may be necessary to simulate the crashing ofaponent.

A GUI shall be implemented allowing developers & eturn values, timeouts, etc. for each
attribute a component defines. If the developersdoat set these parameters via the GUI, the
infrastructure should then search the ACS CDB dritld values cannot be found there either,
they will be generated on the fly.

* The GUI will be a dumb client for all intensive pases. In other words, the intelligence of the
simulation will reside in an API available to desérs and the GUI will just make requests of the
API. This will be used to facilitate the simuldtouse in modular tests.

PRELIMINARY DESIGN

There were quite a few possibilities that were édsaround during the initial design phase of the
simulator. While none of these proposals could nileetdemands of ALMA on their own, the final
design ended up being a melting pot of the follguioncepts:

» The simulator would be more of an interactive IDterface compiler than anything else. In this
way, the implementation of the ACS container woold have to be changed and a so-called
simulated component would behave identically tol reamponents. The downside is the
developer would be constantly harassed with questike, ‘what values should the ‘xyz’ method
return”. The simulator could also try to predict reasdeakturn values on its own.

» The developer would run the container interactivahgl manually set the return values for all
component attributes/methods to be simulated. Tam thing this has going for it is complete
control over each simulated implementation and ewenability to dynamically change what
methods do. The simulator/container could evendiepsto import a user-defined module from
the command-line which sets these automaticalbtat-up. The upside to this is minimal time is
required to implement it. It would not even be rssaey to subclass the CORBA skeleton classes
because Python has some very useful functionsyfwardically attaching methods to classes (the
“new” package). It might even be possible for thel-@ser to simply invoke a function like
defineMethod(MOUNT_ACS_POA.Mount, “moveAntenna”,ettrn 1.23") meaning the
moveAntennanethod of thé/lountIDL interface returns a constant double value.

» Asubclassed container would be used which doesf #lle work for the developer. It would read
a string from the ACS CDB to evaluate each methbodiate and return that. The output of



10th ICALEPCS 2005; D. Fugate, G. Chiozzi, A. Caproni, B. Jeram, H. Sommer, S. Harrington et al. : A gen... 4 0f 6

methods would almost certainly have to be statat & flexible as the previous two alternatives,
this would be most user-friendly.

Decision to use Python

Since the simulator should be able to emulate cormpis where the interfaces are not known ahead
of time, a dynamic programming language seems tliee logical choice for the implementation.
Python is both dynamically scoped and typed, suppdynamic inheritance, and most importantly
allows developers to dynamically redefine methotlsua-time. ACS already provides a Python
container which makes Python the ideal languagéh®simulator’s implementation.

FINAL DESIGN

The final design for the simulator ended up beingoanbination of the three main contenders
yielding an extremely powerful framework. In shothe accepted design allows developers to
configure the behaviour of simulated componentsfaor different ways — completely self-
implementing components, configuration files foumdhe ACS CDB, a GUI, and an API. It has some
of the following characteristics:

» Using the CORBA IDL Interface Repository (IFR), ®RBA service which stores and retrieves
IDL, it is possible to accurately create methodimetvalues for the developer without their input.

» The Python container can be executed from an ictieea Python session. This implies the
developer can swap out entire method/attributeémglntations with ease.

* Instead of simulating components at the interfagell where all component instances of a given
IDL type behave identically, we simulate at the ednaomponent instance level. This means that
each simulated component of a given type can bdiguwad to behave uniquely which is
different from the three proposals.

* Using native Python methods, it is possible to dyically create the implementation of any IDL
interface. This implies simulation could indeed wcat the component level without making
modifications to the container.

» Using native Python methods, it's possible to re@lhod/attribute return values in the form of
XML strings from the ACS CDB.

Configuration Database

The usefulness of defining simulated component Wieha before run-time is especially important
for an extremely complex software system such aBIAL For example, perhaps the end-user wants
to find out what happens when the return value ahes method is fixed. Productivity may be
hampered because of the time spent changing rehlues each time the simulated component is
created. For reasons like this, the characteristia simulated component can be retrieved from the
ACS CDB if the user does not explicitly set themsloyne other means. The CDB entries are placed in
the /alma/simulated/ section. The current implertgon of the XML schema describing simulated
components allows setting method timeouts amoner atfings.

Application Programming Interface and Graphical Useterface

At times it can be quite useful to change the bighavof a simulated method or attribute at run-
time. For example, a regression test can requstetethe client of a component with many possible
return values for the same call performed. We tbheeeneed a way to instruct the simulated
component to behave in a specific, but differeng fam each call received by the client being tested

This is possible by running the ACS Python contami¢hin an interactive Python session and then
manipulating the component(s) with an easy-to-uBé Ahe API methods provided are generally in
the formatsetXyawhereXyzis some configurable data. Some of the configerabms are:

» Astandard timeout for all methods and attributgsadgnically implemented by the framework

» The maximum sequence size for CORBA sequences

» Associating a new timeout, function to be executdd,for a particular component’s method or
attribute



10th ICALEPCS 2005; D. Fugate, G. Chiozzi, A. Caproni, B. Jeram, H. Sommer, S. Harrington et al. : A gen... 50f 6

This API is also used by a GUI which is spawnedy first simulated component started within a
container. The purpose of the GUI is to make thd ARch simpler to use for end-users who
potentially have no programming background.

Self-implementing Components

Last but definitely not least, a simulated companeitl implement its own methods and attributes
completely autonomously if the end-user fails titizgt any of the other three mechanisms to modify

the behaviour of simulated components.
]

. %

ol
o

Pool of ‘random’ characters:

ACS
Simulator
Factory
ACS
Simulator
Factory

Timeout: (.2

Maximum Sequence Size: 15

- Avaitable Simulated Components

T
i Component Hame: HELLOWORLD1 ~
A
Operation Selection Methods: Attributes I

hadkethod
display Message

|-
®

Dynamic \ \
Implementor

A ? . Q .

Imple.mentation O?ACS
__ Container

Figure 2: Diagram depicting how simulated componémstion within a container

RESULTS

The simulator framework is currently being usedabfew ALMA subsystems. The Executive team
is working on creating an operator GUI which intis a client of many different components created
by other ALMA subsystems. The problem Executiveexperiencing is that while all of the IDL
interfaces describing these components have beaenmented, the components themselves have not
been completed. In situations like this, the sirmulés proving itself to be an invaluable tool. éwf
other groups have begun using the simulator as with the primary use intended to be decoupling
their modular tests from the implementations of ponents provided by other subsystems.

CONCLUSIONS
Overview from a User’s Perspective

From an end-user’s point of view, the simulator bardownright trivial or fairly complicated to use
depending upon the functionality desired. Right ofitthe box, all one has to do is modify a
configuration file describing the component to #awill exist within a Python container and then
change the implementation library name to that leé simulator component factory. Simply
performing the steps listed above gives the useesacto a component which automatically
implements all methods its interface defines amarns fairly reasonable values. For those demanding



10th ICALEPCS 2005; D. Fugate, G. Chiozzi, A. Caproni, B. Jeram, H. Sommer, S. Harrington et al. : A gen... 6 of 6

a more realistic simulation, they can provide tlosin logic in the form of XML configuration filesro
input this information at run-time using the GUbéor API.

This approach makes it very easy to implement grbghaviour, but we have seen from our users
that there are many cases where we have compleagion needs. For example, we might need to
link the value of attributes to the current valdeother attributes. Consider the right ascensioth an
declination in the sky of a telescope; they depemdhe azimuth, elevation and time. Implementing
these and more complex relations with snippetsytfidh code embedded in the XML definition files
is rather complex and difficult to debug. The magguest from our community is to make such
complex simulations easier to implement.

Future Improvements

There have been a number of proposed enhancenmntkef simulator that are currently being
implemented. First, most people will agree the famrk's major shortcoming is that the XMLs do
not support complex Python language constructs asdbops. End-users choosing to utilize the CDB
are limited to very simple Python operations andecthat depends upon the orientation of white space
is out of the question. Support for this will bedad with the release of ACS 5.0 this Fall and wé wi
also include the capability of adding methods ® shmulated component from the CDB. Aside from
what's mentioned above, the following improvemenits be made:

» Sophisticated support for receiving/sending eveiitde added
* An area in the CDB will be added in which users dafine XMLs defining the behaviour of all
IDL interfaces of a given type

REFERENCES

[1] OMG. “CORBA 3.0.” IDL Syntax and Semantidglay 26, 2005.
<http://www.omg.org/technology/documents/formallmr2.htm> (15 September, 2005).

[2] OMG. “CORBA 3.0." Interface Repositorivay 26, 2005.
<http://www.omg.org/technology/documents/formallmr2.htm> (15 September, 2005).

[3] Beazley, David. Python Essential Referenndianapolis: New Riders, 2001.

[4] G.Chiozzi. ALMA Common Software: a developer frign@ORBA based frameworlPaper
5496-23. Glasgow, Scotland: SPIE, 2004.

[5] H.Sommer,_Container-component model and XML in ALMES. Paper 5496-24. Glasgow,
Scotland: SPIE, 2004.

[6] D.Fugate. A CORBA event system for ALMA Common Swafie Paper 5496-68. Glasgow,
Scotland: SPIE, 2004.

[7] G.Chiozzi. ALMA Common Software (ACS): status amyelopmentsGeneva, Switzerland:
ICALEPCS, 2005.




