
THE TANGO COLLABORATION: STATUS AND SOME OF THE

LATEST DEVELOPMENTS

E. Taurel1, D. Fernandez2, M. Ounsy3, C. Scafuri4
1ESRF, Grenoble, France, 2ALBA, Barcelona, Spain

3Soleil, Orsay, France, 4Elettra,Trieste, Italy

INTRODUCTION
Tango is an object oriented, multi language control system framework developed to fulfil the needs

of today’s user of control systems. These needs are interfacing hardware in a reliable and performing
manner, hiding its complexity, treating errors and alarms, distributing controls over the network,
providing easy high level access, archiving long term data, user friendliness, interfacing some well-
known commercial software and providing some kind of Web access. Performing all these tasks is a
huge amount of work. With limited man power and amount of money, a solution to have these tasks
done in a relatively short delay is to create (or enter) a collaboration between institutes. The
development of the Tango control system is an example of this kind of collaboration including 4
institutes which are:

ALBA the new Spanish synchrotron actually under construction in Barcelona
ELETTRA the Italian synchrotron located in Trieste
ESRF (European Synchrotron radiation facility) the European synchrotron located in Grenoble

(France)
SOLEIL the French synchrotron under construction in Paris
In this paper, we will first gives a general overview of what is Tango with its main features, then,

we will detail some of the new developments done within the Tango community and finally, we will
explain the day to day life within our collaboration.

WHAT IS TANGO?
Tango uses CORBA for doing network communication. CORBA is a language independent standard

for implementing distributed objects on the network. Tango uses the omniORB [1] implementation of
CORBA in C++ and JacORB [2] for Java. OmniORB and JacORB are freely available and open
source software.

Tango supports two programming languages which are C++ and Java. It is supported on Linux,
Solaris and Windows. Tango is free software and is available as a source distribution package for
UNIX like operating system and as a binary distribution for Windows. You can download it from [3].

Philosophy
The philosophy of Tango is to provide users with an object oriented control system which is

powerful and easy to use. Tango uses CORBA as network layer and offers the advantages of using
CORBA but hiding its details. We have adopted the approach that all TANGO objects are derived
from one class called Device. Device is the basic TANGO component. It defines all the network
features of equipment controlled with Tango and is defined within a single CORBA network interface.
Therefore, from the control system client point of view, there is no difference between controlling
sophisticated equipment like a Radio Frequency cavity or a Magnet cooling water flow meter.

Device, Command and Attribute
Within Tango, every controlled equipment is a device. Each kind of equipment is described by one

specific implementation of the Tango device pattern that we call a Tango class. Every time this
equipment is installed and has to be controlled, a new instance (called a device) of this Tango class is
created. A Tango device support command and attributes and has a state. Commands are used to
implement “action” on a device while attributes are used to read/write data values. Attributes can be 0,
1 or 2 dimensional data. Each attributes has a set of parameters like description, units, limits,
alarms…

10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 - 14 Oct 2005, WE2.3-6O (2005)

Device Server process

A device server is an operating system process with one or several Tango class. Following a
predefined main() or winmain() structure, the device access software programmer merges all the
Tango classes s/he want to run within the same process. Device name and number for each Tango
class is defined in the database and is retrieved during the process startup sequence. Multiple
instances of the same device server process may run within a single TANGO system. Each instance
has an instance name specified when the process is started. The couple process executable
name/instance name uniquely defines a device server.

Polling features
Within each device server, a “polling” thread is created. This polling thread has two rules which are:
• Regularly read attribute or execute command and store the result in a cache buffer. When a client

request is received by the device server, the default behavior is to first check if the requested data
(command result or attribute reading) is already stored in this cache buffer. If this is the case, data
are fetched from this buffer instead of accessing the real device thus allowing very good response
time. This is particularly helpful for slow devices accessed via serial line.

• Be the source of event for the Tango event system (described more deeply in following chapter)

Client API
Tango clients could be programmed using only the CORBA API. Nevertheless, CORBA knows

nothing about Tango and programming at this level means that clients have to know all the details
about CORBA programming. The Tango philosophy is to hide these recipes in an API. The API is
implemented as a set of C++ and Java classes. This API implements automatic reconnection between
clients and server in case of server restart or front-end computer reboot. It also hides which release of
the Tango network Interface Definition Language (IDL) Tango device implements.

Client/Server communication

For the most important API remote calls, and on top of the event system, Tango supports two kinds
of requests which are the synchronous model and the asynchronous model. Synchronous model means
that the client wait (and is blocked) for the server to send an answer. Asynchronous model means that
the client does not wait for the server to send an answer. The client sends the request and immediately
returns allowing the CPU to do anything else (like updating a graphical user interface). The client has
the choice to ask to be informed by the server when the request is finished or to periodically check if
the request if done.

Tango Tools

TANGO is delivered with a full set of graphical tools for building TANGO device servers, testing
them, plotting, logging and archiving. All graphical tools are written in Java using the Swing
graphical library. The following graphical tools have been developed so far:

• �pogo - a graphical tool for generating device classes in C++ or Java. Removes a large part of the
tedious work involved and makes device class development very rapid.

• logviewer - a graphical tool for viewing and filtering log messages.
• jive - a graphical tool for viewing and modifying the database and testing devices.
• devicetree - a generic graphical tool for testing devices and building simple monitor panels.
• astor - a graphical tool for supervising a TANGO control system e.g. starting device servers,

checking if device servers are running etc. and testing devices. It uses a specific Tango device
server called “Starter”

Tango Services

The following services are offered in Tango :
• �database - a system wide database using MySQL is provided for persistent storage of device

properties and device names

10th ICALEPCS 2005; E.Taurel, D. Fernandez, M. Ounsy, C. Scafuri et al. : The Tango collaboration Status ... 2 of 6

• �naming - a naming service is provided via the database which allows devices to be found
independent of which host they are running on

• event - TANGO uses the omniNotify implementation of the CORBA Notification service. This
service is described more deeply in the following chapter

• logging - a logging service which uses log4j is provided for all devices.
• archiving - archiving of historical data in a database is provided for off-line analysis and retrieval
• groups - groups of devices can be constructed on the fly and controlled as a single device.

Tango Graphical User Interface

Tango ATK (Application Toolkit) is a collection of Java classes to help building applications based
on Java/Swing which interact with Tango devices. It is developed using the design pattern called
Model-View-Controller (MVC) also used by Swing. Tango ATK provides a set of graphical objects
called “Viewers” adapted to each type of Tango attributes or commands and non-graphical objects.
The rule of these non-graphical objects is the interface with the Tango device. The communication
between the non-graphic and graphic objects is done by registering graphic objects as listener of the
non-graphic object. The non-graphics objects emit Tango ATK events which are sent to all graphical
objects registered as listeners. Tango ATK helps minimizing graphical application development time,
avoid code duplication and provide a common look and fell between applications. A talk (and a paper)
describing more deeply Tango ATK will be given in this conference.

Nevertheless, Java is not the choice of everyone. Therefore, another graphical layer based on C++
using the Qt library is now under development by the Elettra control group. Nevertheless, this will
also used the philosophy adapted by Tango ATK.

Bindings

Physicists as well as engineers are using more and more commercial tools like LabView, Matlab or
Igor to help them in their day to day work. A modern control system has to give them a way to talk to
their equipment from these tools. Tango supports bindings for Matlab, LabView and Igor products.
This means that it is possible to access Tango devices from a Matlab macro or from a LabView
“virtual instrument”. A binding also exists for the Python language but only on the client side allowing
a python script to access any kind of tango device.

LATEST DEVELOPMENTS

The Event System
An event system has been recently added to Tango kernel features. Events are a critical part of any

distributed control system. Their aim is to provide a communication mechanism which is fast and
efficient. The standard CORBA communication paradigm is a synchronous or asynchronous two-way
call. If the client has a permanent interest in a value he is obliged to poll the server for an update in a
value every time. This is not efficient in terms of network bandwidth nor in terms of client
programming. For clients who are permanently interested in values the event-driven communication
paradigm is a more efficient and natural way of programming. In this paradigm the client registers her
interest once in an event (value). After that the server informs the client every time the event has
occurred. This paradigm avoids the client polling, frees it for doing other things, is fast and makes
efficient use of the network. Tango events are only available on device attributes. The clients continue
receiving events as long as they stay subscribed. Most of the time, one specific device server thread
(the polling thread) detects the event and then pushes the device attribute value to all clients.
Nevertheless, in some cases, the delay introduced by the polling thread in the event propagation is
detrimental. For such cases, some API calls directly push the event. To propagate the event between
the device and the registered clients and to add some filtering features, Tango uses a CORBA service
called “The CORBA Notification service”. We have chosen omniNotify [4] as our implementation of
the Notification service. Five types of events are implemented in Tango:

• The change event: An event is triggered and the attribute value is sent when the attribute value
changes significantly. The exact meaning of significant is device attribute dependant. For analog

10th ICALEPCS 2005; E.Taurel, D. Fernandez, M. Ounsy, C. Scafuri et al. : The Tango collaboration Status ... 3 of 6

and digital values this is a delta fixed per attribute, for string values this is any non-zero change
i.e. if the new attribute value is not equal to the previous attribute value. The delta can either be
specified as a relative or absolute change

• The attribute quality factor change event: Each Tango attribute has a quality factor describing the
quality of the attribute data. An event is triggered and the attribute value is sent if the attribute
quality factor changes e.g. from valid to alarm or vice versa.

• The periodic event: An event is sent at a fixed periodic interval.
• The archive event: This event is a mix of the change event and the periodic event. It has been

implemented to simplify the development of the Tango archiving system.
• The user event: The criteria and configuration of these user events are managed by the device

server programmer who uses a specific method of one of the Tango device server kernel class to
fire the event

Another Graphical User Interface for Tango Based on Qt
A C++ graphical user interface library is being developed at ELETTRA, based on the Qt widget set.

It is composed of 3 modules: Ttk (Tango tool kit), QtControls and QTango. Ttk is a non graphical
library which transparently manages event subscribing, polling threads, device proxy creation and
caching, and client side error logs. Since it depends only on Tango, it can be also used to write
complex Tango applications (e.g. middle layer servers) or to bind Tango to other C++ graphical
toolkits (for example wxWidgets). QtControls is a small set of custom Qt widgets used to display
(view) and set (control) data in a format suitable for controls. QTango is built on top of Ttk,
QtControls and Qt widgets. It automatizes the most common usage patterns used for writing graphical
control applications. Specifically associate a device attribute or command with a viewer (scalar or
spectrum) or a controller. This library allows the inexperienced user to write graphical control
applications with a very basic knowledge of Tango; it is sufficient to know the fully qualified name of
the commands and attributes of interest. At the same time QTango provides experienced programmers
with full access to the underlying Tango objects instantiated and managed by Ttk.

Tango Web access
The Tango to Web interfaces is composed by two PHP tools: one for visualizing the current data and

the second one to display data coming from the Tango archiving database. The requirements for the
web server are PHP configured with a few common modules and for the client a browser with cookies
and popup enabled. No plugging or jvm are necessary. The user interface is composed by several
pages called panels which display the information coming from a particular device (or device
aggregation). Each panel is composed of a certain number of "widgets" and some HTML tags; a
widget is a graphic element which represent a single attribute (or command or property, yet not
implemented). There are also some pages which allow to browse all the available devices, select a
whole device or a single attribute, select and customize the widget associated to each attribute The
communication to Tango is implemented through a raw text socket. There is a Python script which
includes the Python to Tango binding (PyTango) and act both as a Tango client and socket server. The
PHP socket client is encapsulated in a buffering system in order to limit the network bandwidth used
to get the data out of the control system. There is also a little PHP extension which implements an
experimental SOAP web service.

 The whole Tango to web project is in its start-up phase and many developments are foreseen in the
next months. For further details see [5] and [6]

The Tango Alarm System
The alarm server, named Alarm Collector, is a particular Tango device server, written in the C++

programming language.
A double client/server architecture allows the Alarm Collector to gather the necessary input values

from the involved device servers as a client, whereas as a server will then provide alarm notification
to any client interested in receiving alarms. It heavily relies on the Tango event system to collect the
input values as well as to provide the alarm notifications.

10th ICALEPCS 2005; E.Taurel, D. Fernandez, M. Ounsy, C. Scafuri et al. : The Tango collaboration Status ... 4 of 6

On a per-event basis, the server will then evaluate all the relevant alarm formulas, i.e. those that
contain the changed attribute, update the list of active alarms, and send it to the alarm clients. A talk
(and a paper) describing more deeply the Tango alarm server will be given in this conference.

THE TANGO COLLABORATION

The history
The development of Tango started in 1999 at the ESRF. In 2002, the new French light source

project SOLEIL studied several solutions to implement the control of its accelerator complex plus
beam lines and selected Tango. A collaboration agreement has been signed allowing both institutes to
share the development workload and take together the best strategic decisions. In January 2004, the
machine control team of the Italian light source ELETTRA joined the collaboration and participates
actively in its development. In December 2004, the new Spanish synchrotron called ALBA also
decided to join the collaboration and to use Tango for their control system.

How it works?
Two or three meetings are organized every year to take decision and to follow-up the action plan.

These meeting are hosted by each institute in a round-robin manner. A mailing list is also dedicated to
Tango problem, questions and sharing. Nowadays, up to 60 people are members of this list. This is a
moderate traffic mailing list (in average one/two mails per day). A tango coordinator has been
nominated within each institute member of the collaboration. Its rule is mainly to keep other institute
aware of what’s happening in its own institute (concerning Tango), to organize the regular meeting
and to follow what happen on the mailing list.

Developing software within the collaboration
Several way of developing shared software within the collaboration has already been used. The

more common way is to assign a complete sub-system to one institute. The long term archiving
system is an example of this kind of development which has been assigned to the Soleil institute. The
features requested to the sub-system as well as it main architecture are discussed within our
collaboration meeting. Then, people in charge of the development are doing their work in their home
institute. It also happens that a sub-system developed in one institute is taken in charge by another
institute due to work load issue. An example of such a case is the Tango client Python binding which
has been initiated by Soleil and which since its release 2 is now taken in charge by our Italian
colleagues. Finally, it is also possible that people in two institutes work at the same time in the same
sub-system. This implies that developers in both institutes have a good knowledge of the sub-system
in order that their work does not interfere with the work done by the other developers in the other
institute. Obviously, in such a case, CVS is a mandatory tool. One of the features of the Tango kernel
library (called “database on file”) has been developed this way. It was added to the C++ library by
Italian colleagues while at the same time work on the same C++ library was done by ESRF
developers.

Sharing software
To practically share the software, we are mainly using two tools which are the Web and CVS server

through SourceForge facility [7]. Each institute has in their WEB server, some pages dedicated to
Tango where you can find useful information like documentation or download code feature. The
URLs are given in [3], [8] and [9]. Two different projects have been created on SourceForge to share
software using SourceForge CVS servers. The first one is called Tango-cs and is mainly dedicated to
the Tango core source code (Java and C++ API sources, kernel device server source code, Tools
source code…). The second one called Tango-ds is dedicated to Tango device servers source code.
The rule of this second SourceForge project is to store source code for all device servers used to
interface commercial hardware (and then possibly bought by the other institute) and general purpose
device server not linked to a specific hardware. Actually, source codes for 45 differents Tango device
classes are stored within this SourceForge project. The source code for device server used to interface
hardware developed in house is also available as a kind of example in the WEB pages of each

10th ICALEPCS 2005; E.Taurel, D. Fernandez, M. Ounsy, C. Scafuri et al. : The Tango collaboration Status ... 5 of 6

institute. Finally, more than 200 Tango device classes are actually available. In order to know that
someone is developing a device server class for a new kind of equipment, as far as this new class is
stored in the CVS repository, a mail is sent on the mailing list to inform Tango users that a Tango class
for this kind of equipment is under development and will be ready soon.

Using software pattern to improve collaboration between institute
As an object oriented control system, Tango uses object oriented language (C++ or Java). These two

languages support the notion of abstract classes in C++ or interface in Java. Using theses features,
Tango implement what is called Abstract Device class. Within a Tango abstract device class for one
kind of equipment, you define what its basic interface is (in term of Tango command and/or attributes)
but you don’t define how these commands or attributes are effectively coded. Each concrete class
developed for this kind of equipment will inherit from this abstract device class (or interface) and will
effectively add the code necessary to implement the already defined command and/or attributes. This
gives the assurance to application programmer that any equipment of this kind will support this
command and/or this attributes and he can base his software on this assumption. One poster presented
in this conference describe more deeply this way of developing Tango device classes.

This abstract device class pattern could be used to extend collaboration between institutes on the
application part. One application using only command and/or attributes defined by abstract classes
can be shared between institutes whatever the concrete class are.

What we share and what we don’t share
From the experience we gained in our collaboration since several months, it is now possible to set

up a list of what is effectively shared and what is not shared in our collaboration. The kernel part of
Tango is something which is effectively shared by our institutes. Device classes are also shared but
obviously only between institutes using the same hardware or with the same kind of requests.
Bindings are also something which is easily shared. What is not actually shared is the graphical layer
above Tango. Elettra’s colleagues prefer using C++ graphical layer like Qt to interface their Tango
devices, ESRF uses pure Java for graphical application and Soleil uses a Java based Scada system but
re-using some part of the Tango ATK layer. It’s actually too early to know what Alba will use as
graphical layer. A reason of these divergent choices could be that the market in this area is so large in
term of languages and in terms of already existing tools and libraries that it is difficult to reach an
agreement between institutes. On top of that, the drawing quality of one system could be judged
differently from one country to another due to some cultural habits.

CONCLUSION
To solve all user requests which always increase, it is nowdays necessary to enter a control system

collaborative development or to choose one which is already developed. Tango is an example of a
collaborative development. Only collaboration has allowed us to give all these functionalities to the
kernel and to have a Tango device classes catalogue with more than 200 classes. Even if by some
aspects collaboration could be seen as a heavy task (finding a date for collaboration meeting for
instance), it is the only way to develop a modern full featured control system within a reasonable
delay and with limited manpower and money.

REFERENCES
[1] http://omniorb.sourceforge.net/
[2] http://www.jacorb.org/
[3] http://www.esrf.fr/Infrastructure/Computing/tango
[4] http://omninotify.sourceforge.net
[5] http://www.elettra.trieste.it/~tango/Canone
[6] http://www.elettra.trieste.it/~tango/E-Giga
[7] http://sourceforge.net
[8] http://www-controle.synchrotron-soleil.fr:8001/collaboration
[9] http://www.elettra.trieste.it/~tango/index.html

10th ICALEPCS 2005; E.Taurel, D. Fernandez, M. Ounsy, C. Scafuri et al. : The Tango collaboration Status ... 6 of 6

