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Abstract

This paper describes the design of a feedback system for
the TESLA linear collider study. Based on linear state-
space models, the algorithm uses a predictor-corrector for-
malism of optimal control theory. In order to control the
orbit of the beam, the corrector settings are determined (via
Linear Quadratic Gaussian Control) by an estimation of the
state vector. On the basis of measurements, the state is esti-
mated by the Kalman filter which minimizes the variance of
the estimation error. The feedback loop algorithm is given
by matrix equations. It is highly advantageous that the ap-
plied matrices can be determined before the measurements
are available. First results of these numerical simulations
are presented.

1 INTRODUCTION

The design studies for a next generation e+e� linear col-
lider differ mainly in the choice of bunch charges, rf-
frequencies and spot sizes [1]. The TESLA 500 approach
uses superconducting Nb accelerating structures operat-
ing at 1:3 GHz and is, hence, on the lower end of the
rf-frequency scale. The main advantages of this concept
are very low wakefields and a high accelerating efficiency,
whereas a stable operation with a gradient of 25 MV/m has
to be demonstrated. TESLA 500 is aiming for a nominal
luminosity of 3:6 � 1033cm�2s�1 at a center of mass en-
ergy of 500 GeV and with a repetition rate of 5 Hz. Crit-
ical parameters are the requested transverse beamsizes of
�?
x
n�?

y
= 845n19 nm and the small vertical emittance of

the beam at the interaction point. Several feedback loops
for orbit control are required to reduce the influence of dis-
turbances which increase the effective emittance.
The goal of the simulation program to be presented in this
paper is to simulate an orbit control in the TESLA beam
delivery section by taking into account certain stochastic
characteristics of the disturbances. Thus, it is important to
develop reasonable models of the noise (typical beam mo-
tion) which are adjusted to given rms-values and spectra. It
also has to include a control algorithm able to handle ran-
dom disturbances.
This paper gives a brief introduction to optimal filtering
and optimal control. It also describes a method to model
the noise as the output of a linear system driven by white
noise. Finally, first results of the simulations are presented.

2 CONTROL OF LINEAR DYNAMIC
SYSTEMS

The concept of a state space has its roots from cause-and-
effect relationships in classical mechanics. The motion of
a system is uniquely described by its current state - like po-
sition and angle of particles - and the future forces acting
on the system. These forces might be well-defined con-
trol inputs such as requested corrector settings, as well as
stochastically arising disturbances. Furthermore position
and angle can not be determined exactly from measure-
ments because of sensor noise. One can only derive an
estimation.
The relation between states, forces and measurements is
described by a first-order differential equation and an equa-
tion of the measurement. By choosing a periodic sampling
tk = kT , k 2 IN; T sample time, the matrices in these
equations are time invariant. The time invariant, discrete
state-space formulation [2] reads as follows (the subscript
k indicates thekth sample)

x(k + 1) = Ax(k) +B u(k) +Gw(k) ;

y(k) = C x(k) + v(k) with

x 2 IRn: state vector of the system which is controlled.
In our case the states are position and angle of the
beam and states describing the dynamics of the cor-
rectors.

u 2 IRm: control input vector (required corrector set-
tings to steer the beam) which is a known input se-
quence calculated by linear quadratic Gaussian con-
trol (LQG).

y 2 IRp: vector of measurements taken by beam posi-
tion monitors (BPM).

w 2 IRl; v 2 IRp: system and measurement noise (as-
sumed to be white, Gaussian random sequences with
a zero mean).

A 2 IRn�n: is in general the transition matrix derived
from the differential equation describing the motion in
the observed system. In our case it consists of trans-
fer matrix elements (defined by the linac model), ele-
ments describing the disturbances and the time delay
for correctors to move to a new required setting.

B 2 IRn�m, G 2 IRn�l : describe the influence of con-
trol input and of white noise on the states.



C 2 IRp�n: consists of transfer matrix elements defined
by the linac model.

2.1 Optimal Filtering

The classical approach to filtering is to suppress unwanted
frequency components, whereas the statistical approach
uses certain statistical characteristics of the useful signal
and of the noise to eliminate as much of the noise as pos-
sible. This can be done by processing measured values
through the Kalman filter using the least squares ideas of
Gauss [3]. The Kalman filter is the best linear filter in the
sense that it provides the smallest error covariance by a pri-
ori knowledge about the system’s uncertainties and mea-
surement noise.
By solving a Riccati difference equation we derive the
Kalman gain factor L(k) as a function of time. The cur-
rent estimate of the statêx using all measured values till
thekth pulse is given by

x̂(k) = �x(k) + L(k)
�
y(k)� C �x(k)

�
;

where the statex is predicted to be

�x(k + 1) = A x̂(k) +B u(k) :

2.2 Optimal Control

The control gainK(k) is calculated in a similar way as the
applied filter by LQG. The requested control inputu(k)
depends linearly on states and reference points:

u(k) = �K(k) �x(k) +N r(k) where

r 2 IRq: are reference points of position and angle,

N 2 IRm�q : maps the reference points to the control
input;N is derived from the linac model.

In the calculation ofu the time update�x and not the mea-
surement updatêx is used to simulate a delay of one pulse.
Note that the gain matricesL(k) andK(k) depend on time,
but they can be derived before the first measurement is ob-
tained [3]. Other advantages are the linear dependence of
all important values of the control loop and that the algo-
rithm is recursive.

3 THE DISTURBANCE MODEL

One important part is to investigate the reasons for the
beam variation and the characteristics of disturbances. The
use of stochastic or random concepts is suitable to describe
disturbances appearing in an accelerator (such as measure-
ment errors, beam variation). They are generated as out-
puts of linear dynamic systems driven by white noise. This
shaping filter is designed in such a way that its output
matches the spectrum of the assumed disturbances.
Let W (z) andS(z) be the Z-transform of the input signal
wk and of the output signalsk of the shaping filter, respec-
tively. The relation between input and output is given by

S(z) = H(z)W (z). H(z) is the transfer function of the
shaping filter which is a rational function inz�1:

H(z) =

NP

n=0

bnz
�n

1 +
MP

m=0

amz�m

:

The power spectral density (PSD) of the output,�ss, is
given by

�ss(z) = H(z) �ww(z)H(z�1) ;

where�ww is the PSD of the input white noise. Methods
proposed in [4, 5] estimate the coefficientsam andbn so
that the shaping filter possesses the desired frequency char-
acteristics.

4 THE PROGRAM

The simulation program is written in Fortran 90 which is
very suitable for matrix multiplications. It generates the
filter parameters used for the noise model, determines the
matrices needed for the feedback and simulates the closed
loop. In this loop the user can select between different kind
of disturbances (dirac, step, white noise) and determine
their amplitude and arrival time. Several plots such as the
PSD of beam jitter before and after control, the response
and the Bode diagram of the loop can be obtained. Before
each run the user can vary all values of the assumed distur-
bance model like rms-values of jitter, frequency range of
disturbances and the linac model (i. e. number/position of
correctors and BPM’s used for feedback; position of con-
trol, reference points). It is also possible to obtain plots
of the Kalman filter loop comparing the estimated and the
actual beam parameters.

5 PRELIMINARY RESULTS

The problem in designing a feedback loop is the wish
to satisfy several criteria which often compete with each
other. The feedback should provide a good rejection of DC
bias and of disturbances, respond quickly to a step pertur-
bation, work even when assumptions about the linac model
differ from reality, minimize the variance of the states and
should avoid oscillations in the closed loop.
For the simulations presented in this paper we assumed the
following: a sample frequency of5 Hz (repetition rate of
TESLA) and a BPM resolution between100 nm and200
nm. In the BDS tuning and diagnostic section the spot sizes
will be about�xn�y = 17n3:3�m. The rms-values of the
beam motion were choosen between25% and50% of � in
both transverse planes. The spectrum of the beam motion
used in this model resembles a spectrum of a lowpass filter
plus some peaks at special frequencies. The results depend
strongly on the passband and cut off frequencyfc of the
shaping filter.
The feedback loop works quite well for low frequency dis-
turbances. For example, a DC bias rejection of�40 dB



was achieved for noise models withfc = 0:005 Hz. Rais-
ingfc to0:01Hz and0:1Hz lowers the DC bias rejection to
�32 dB and�15 dB. Fig. 1 shows the effect of the shaping
filter’s fc on the beam control: for the same incoming dis-
turbances the feedback works essential better by assuming
a smallerfc. For higherfc the user also has to reckon with
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Figure 1: Plots of simulations: Controlled (solid) and un-
controlled (dashed) beam motion forfc = 0:05 Hz (upper
plot) andfc = 0:005 Hz (lower plot) in the sampling time
scale.

oscillations in the feedback loop and a much longer time
to recover states from a step perturbation on the incoming
beam.
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Figure 2: Plots of simulations: 1.) Response on a step
disturbance on incoming beam; 2.) Disturbance transfer
function of a feedback loop, Nyquist frequency at 2.5 Hz,
fc = 0:005 Hz.
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