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Abstract

This paper presents a finite element method for calculating
resonant frequencies for an arbitrary three dimensional cav-
ity. Firstly traditional nodal methods are considered and the
reason for their failure in modelling high frequency fields.
An edge element formulation and its solution of the prob-
lems of spurious modes and modeling of reentrant corners
is presented. With the aid of two realistic cavity designs the
strengths of the finite element approach is illustrated.

1 TRADITIONAL METHODS

The use of finite element analysis is widespread throughout
the spectrum of engineering disciplines. Indeed its use in
the design of electrical equipment goes back to the very in-
ception of the method. However, until recently, the analy-
sis of high frequency devices such as resonant cavities has
been beyond their reach. Traditional approaches have been
plagued by “spurious”, i.e. nonphysical, modes and the in-
ability to model singularities adequately. The background
theory and the reasons for these difficulties are discussed be-
low.

1.1 Background Theory

For simplicity it can be assumed that the cavity contains
no charges or currents and the walls are made from per-
fectly electrically conducting (PEC) material. The funda-
mental equation describing the electric field is the vector
wave equation:
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with the following condition holding PEC boundaries

E � t = 0 on �PEC (2)

Further assuming all materials within the cavity are linear,
(1) reduces to the vector Helmholtz equation for each indi-
vidual mode n,
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In a local volume of space it is always possible to decompose
a vector field into rotational and irrotational components,

E(x) = r̂ v(x) +r�(x) (4)

where v(x) and �(x) are arbitrary vector and scalar fields
respectively. The second term is familiar from electrostatics
where it is common to solve the potential problem,

r � "r�(x) = �(x) (5)

and from � determine E. Any electrostatic solution may
be formally considered to be a time harmonic solution with
zero resonant frequency. Indeed the solutions to (3) fall into
two categories,
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The dynamic relation (3) contains a subset of zero eigen-
frequency solutions corresponding to electrostatic problems
with arbitrary sources. These are the “spurious” modes.

The traditional method for representing a vector field in
finite elements is to expand each of its components in terms
of nodal scalar shape functions Ni(x),

E(x) =
X

nodes p

ep Np(x) (7)

where ep are the vector unknowns at each node. The
Galerkin method then leads to the following functional
equation for E(x),
Z
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where W is a trial vector field of form (7). Performing the
integrals leaves a sparse generalised eigenvalue problem,

A e = !2nB e (9)

for which standard methods of solution exist [1]. Unfortu-
nately the resulting spectrum of solutions obtained is a tan-
gle of spurious and physical modes. Although examination
of the modes calculated may be made, discarding those with
“significant” values of r �E, this is hardly satisfactory.

This discrepancy between the continuum prediction of (6)
and the discrete implementation is due to an inappropriate
choice of basis functions. The problem is that nodal basis
vectors cannot exactly represent fields of the formr�. This
is evident from the discontinuity of r� crossing element
boundaries whereasW(x) is continuous everywhere. As a
result the zero frequency continuum solutions aquire mesh
and problem dependent frequencies, typically comparable
to the physical modes of the device.



The use of E as the state variable in traditional electro-
magnetic finite elements has always been problematic be-
cause it is discontinuous between media of differing dielec-
tric properties. Alternatively the problem may be described
in terms of the underlyingpotentialsA and� which are con-
tinuous. Choosing the Lorentz gauge the problem may be
reformulated as,

r2
A(x)� �"!2A(x) = 0 (10)

with the boundary condition for A analogous to (2). The
“spurious” modes in this approach are then removed by the
boundary conditions.

Unfortunately for problems with reentrant corners, and
therefore singular fields, methods of this type are found to be
significantly in error [2]. Even for models where (2) is self
evident they do not even converge to the correct solution. It
is only by using singular expansion functions around reen-
trant corners that the correct results are recovered [3]. For
this approach to be generally applicable it would be neces-
sary to determine the asymptotic solution of the field around
arbitrary junctions of this type. Thankfully there is a more
elegant solution to this problem which is presented in the
following section.

2 EDGE ELEMENTS

As shown, the combination of discrete meshes and vector
components is not a comfortable match. Edge elements side
step the whole question of components by only dealing with
well defined scalar quantities. In this approach the degrees
of freedom associated withE are not its components but the
emf jump between connected nodes. The emf efijg is de-
fined as,

efijg =

Z
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E � dl (11)

where i and j are two nodes in the mesh and l
fijg

is the di-
rected edge connecting them. This is the origin of the term
“edge” in edge elements. In some respects this approach
is very similar to the method of Yee [4] in Finite Differ-
ence Time Domain, although this method is more rooted in
the abstract field of differential geometry [5]. The electric
field is represented by an expansion in vector shape func-
tionsw

fijg
associated with each edge in the mesh,
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The most well known edge element is the Whitney tetra-
hedral element. The vector shape function associated with
edge l

fijg
is,

w
fijg

(x) = �i(x)r�j(x) � �j(x)r�i(x) (13)

where the �i(x) are the barycentric coordinates of x. These
basis vectors have many special properties but one of the
most important is the following:

r�i(x) = wfijg(x) +wfikg(x) +wfilg(x) (14)

where the nodes i, j, k and l form the terathedra enclosing
the point x. This is the property that resolves the problem
associated with “spurious” modes found in traditional meth-
ods. Modeling a scalar field using the standard nodal shape
functions, �, the gradient of this field can be exactly rep-
resented as a linear combination of edge vectors wfg. The
“spurious” modes still exist if edge variables are used but
they can be exactly represented in terms of edge vectors and
therefore do not acquire non-zero eigenfrequencies. Conse-
quently physical and spurious spectra are completely sepa-
rated.

Another advantage is that the boundary condition (2) is
completely natural. The coefficients efijg for edges lying
in the PEC wall are simply set to zero. The values for edges
touching a reentrant corner are no different from any other
and their values are determined by the solution. Also being
related to the emf jump their values are strictly finite.

3 CAVITY EXAMPLES

To test this method a simple rotationally symmetric cavity,
see Figure 1, has been analysed and compared to the 2D fi-
nite difference program URMEL-T and experiment at the
Daresbury laboratory [6]. The harmonics of this system and
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Figure 1: Quarter section of RF cavity given in [6].

coupling to the main beam line are required. Contrary to fi-
nite difference methods the mesh density may be varied ar-
bitrarily in three dimensions and in this example it is quite
important to do so. There are two considerations when do-
ing this:

� Accurate field values in the beam tube to calculate the
coupling of each harmonic to the beam

� Accurately modelling the field variation, possibly sin-
gular, of the harmonics themselves.



Therefore the mesh in the beam tube and reentrant sections
have been graded finely and then progressively coarsened
into the homogeneous chamber volumes.

For devices operating at these frequencies the skin depth
of the real conducting walls is so small that they may be re-
placed with PEC boundaries. For this model the resonant
frequencies in MHz are:

Mode Experimental SopranoEV URMEL-T
Zero 125.12 125.54 124.66
L 541.79 546.82 544.31
L 728.48 730.9 725.24

The column labelled SopranoEV is the implementation of
the edge method and URMEL-T is the standard 2D finite
difference code. These are all longitudinal (L) modes.

A true three dimensional RF cavity, a section of which is
shown in Figure 2, has also been modelled [7]. It comprises
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Figure 2: One sixteenth section of CEA RF cavity.

oval chambers linked by the beam pipe and four symmetri-
cally placed ports. A similar discretisation stategy was used.
The aim of this exercise was to determine the effect of these
ports. Below are presented the main quantities of interest,
including the geometric shunt impedance g:

Mode Freq. (MHz) Q g (
)
No Ports 361.40 36876 147.2
Zero 356.35 41199 150.5

-1.4% +12% +2.2%
� 352.0 35677 155.0

-2.6% -3.3% +5.3%
Expected 1-2% 5-20% 2-5%

The final row contains the perturbations expected by CEA.

4 CONCLUSIONS

The use of Edge elements has removed the problems as-
sociated with “spurious” modes and reentrant corners, that
rendered traditional methods unviable. This new approach
brings with it all the flexibility associated with finite ele-
ments and has shown consistently good results for real prob-
lems. The extension of this method to lossy material and
complex eigenfrequency determination is straightforward
and ongoing.
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