# Magnet Design for the Synchrotron Light Source ANKA

D.EINFELD<sup>1</sup>, A.KRÜSSEL<sup>1</sup> and D. TOMMASINI<sup>2</sup>, 1) Fachhochschule Ostfriesland, Constantiaplatz 4, D-26723 Emden 2) CERN LHC/MMS, Building Nr. 30, CH 1211 Geneva 23

2) CERN-LHC/MMS, Building Nr. 30, CH-1211 Geneva 23

### Abstract

ANKA, a 2nd to 3rd generation 2.5 GeV light source will be built at the Research Center Karlsruhe, Germany. This source will be dedicated to the fabrication of microstructure and X-ray analysis. The magnet system exist of 16 bending magnets, 40 quadrupoles, 24 sextupoles and 40 steerers. The nominal bending flux of the bendings is 1.5 T and the gap height is 40 mm. The dimensions of the lamination have been optimized to reach the required homogenity ( $\Delta B/B < 5 \bullet 10^{-4}$  for  $\Delta X$  $< \pm 25$  mm) and to minimize the material costs. For the design of the quadrupoles with an aperture of 70 mm it was chosen to take cone width poleshoses in order to get a large gradient (20 T/m) with a small amount of saturation (8 %). The sextupole design (l=0.1m) with a differential gradient of g'=750 T/m<sup>2</sup> is based upon the BESSY II type and the steerer design is according to the APS one.

## **1 INTRODUCTION**

The synchrotron light source ANKA [1] will be built at the Forschungszentrum Karlsruhe within the next three years. It is a 2nd to 3rd generation light source with an energy of 2.5 GeV, a circumference of 103.2m and an emittance around 50 nmrad. The magnetic system of ANKA [2] exist of 16 bending magnets ( without a gradient), 40 quadrupoles, 24 sextupoles and up to 40 steerers. In order to get a compact machine, it was chosen to have a nominal field of 1.5 T in the bendings, to reach a gradient in the quads of 20 T/m and have a differential gradient in the sextupoles of  $750 \text{ T/m}^2$ . According to the DBA-structure, the horizontal betatron functions run within the bending through a minimum of 6 mm. Including closed orbit deviations of  $\pm$  10 mm, the beam uses a region of  $\pm 20$  mm. Within this range the homogenity of the field should be better as  $5 \cdot 10^{-4}$ . For the quads, the beam stay clear area is  $\pm 25$  mm. Within this range the homogenity of the gradient should also be better as  $5 \bullet 10^{-4}$ .

# **2 BENDING MAGNETS**

There exist a lot of designs of bending magnets with a nominal field of 1.5 T: BESSY I [3], ELETTRAtransfer-line[4] and MAX II [5]. In order to minimize the production-, the running costs, and the space for the coil at the end of the magnets, however we had to make a new design. For minimising the running costs it was decided to havn't any bake out system and the gap was fixed to 40mm. To keep the saturation up to 1.5 T below 10 % the thickness of the return yoke has to be at least 160 mm. Our design is based on the ELETTRA-Magnet [4]. The cross section of the magnet is given in fig.1, the optimized pole profile in fig.2, the homogenity of the field is presented in fig.3, and the excitation curve in fig.4. The main parameters are summarized in table 1.



Fig.1: Cross section of the ANKA bending magnet.



Fig.2: The pole profile of the bending magnet.



Fig. 3: The homogenity of the magnetic field



Fig. 4: The excitation curve of the ANKA bending magnet.

Table 1: Main parameters for the ANKA bending magnet

| Parameter              | Unit   | Value       |
|------------------------|--------|-------------|
| Number of magnets      |        | 16          |
| Bend angle             | Degree | 22.5        |
| Energy                 | GeV    | 2.5         |
| Magnetic flux densitiy | Т      | 1.5         |
| Bending radius         | m      | 5.559       |
| Magnetic length        | m      | 2.183       |
| Iron length            | m      | 2.130       |
| Total lenght           | m      | 2.310       |
| Gap height             | mm     | 40.0        |
| Pole width             | mm     | 160.0       |
| Fieldindex             |        | 0.0         |
| Ampereturns            | А      | 54000       |
| Number of turns        |        | 60          |
| Nominal current        | А      | 900.0       |
| Number of pancakes     |        | 6           |
| Conductor dimensions   | mm     | 15*15,Ø=7.5 |
| Total resistance       | mΩ     | 29.0        |
| Total inductance       | mH     | 72          |
| Power                  | kW     | 23.5        |

For the ELETTRA-Magnet [4] the agreement between the theoretical [7] and experimental results were excellent. Hence according to fig. 3 we can assume a homogenity better then  $5 \cdot 10^{-4}$  within the region  $\Delta X \le 20$ mm. The saturation in fig. 4 is at the nominal field (B<sub>0</sub> =1.5 T) roughly 10 %. The homogenity and also the saturation are within the requirements.

### **3 QUADRUPOLE**

The ANKA storage ring requires 40 normal quadrupole magnets, consisting of 7 families with two different lenghtes ( $l_1$ =420mm and  $l_2$ =350mm). All quads have the same 2D- geometry and have a bore radius of 35 mm. For the reduction of production cost and getting a simple assembling the quads have a closed flux return yoke. Because of the required gradient of 20 T/m the quad must have a cone pole shoe. The pole profile is roughly the same one as the BESSY II [6] type. The lamination and the pole profile are presented in fig. 5, the homogenity of the gradient along the x-axis is given in fig. 6 and the excutation curve in fig. 7. The main parameters are summarized in Table 2.



Fig. 5: Lamination and pole profile for the ANKA quadrupole.



Fig. 6: The homogenity of the gradient within the quadrupole



Fig. 7: Excitation curve for the ANKA-quadrupole.

Table. 2: Main parameters of the ANKA quadrupole.

| Parameter            | Unit | <b>TYPE 420</b> | <b>TYPE 350</b> |
|----------------------|------|-----------------|-----------------|
| Number of magnets    |      | 8               | 32              |
| Energy               | GeV  | 2.5             | 2.5             |
| Gradient             | T/m  | 17.5            | 16.7            |
| Magnetic length      | m    | 0.42            | 0.35            |
| Iron length          | m    | 0.39            | 0.32            |
| Total lenght         | m    | 0.53            | 0.46            |
| Aperture radius      | mm   | 35.0            | 35.0            |
| Pole width (max)     | mm   | 90.0            | 90.0            |
| Ampereturns per pole | А    | 8800            | 8300            |
| Windings per pole    |      | 38              | 38              |
| Nominal current      | А    | 231.6           | 218.4           |
| Conductor dimensions | mm   | 10*10,Ø=5.0     | 10*10, Ø=5.0    |
| Total resistance     | mΩ   | 39.0            | 34.2            |
| Total inductance     | mH   | 19.0            | 16.0            |
| Power                | kW   | 2.1             | 1.63            |

Most important for the description of the magnetic fields within the quads are the amount of the higher harmonics.

The ratio of n=6/n=2 and n=10/n=2 are summarized in table 3 for different exitations at a radius of 27.5 mm .

| I [A•Wdg] | n=2    | n=6/n=2 | n=10/n=2 | gradient | saturation |
|-----------|--------|---------|----------|----------|------------|
|           | [1]    |         |          | [I/m]    | [%]        |
| 1072.6    | 0.0602 | 9.0E-6  | -3.7E-5  | 2.19     | 0.0        |
| 2681.6    | 0.1505 | 6.0E-6  | -3.4E-5  | 5.47     | 0.0        |
| 5363.1    | 0.3010 | -4.7E-6 | -2.7E-5  | 10.95    | 0.0        |
| 8044.7    | 0.4500 | 4.2E-6  | -2.9E-5  | 16.36    | 0.0        |
| 9385.4    | 0.5198 | -1.5E-6 | -3.1E-5  | 18.90    | 1.3        |
| 10726.2   | 0.5732 | -1.7E-5 | -3.1E-5  | 20.84    | 5.0        |
| 12067.0   | 0.6128 | -3.4E-5 | -4.7E-5  | 22.28    | 10.5       |

Table 3: Harmonics of the quadrupole for R=27.5 mm

With this quadrupole design it is possible to have up to a radius of 30 mm a homogenity better than  $5 \cdot 10^4$  with gradients up to 20 T/m. The saturation at 22 T/m is less than 10 % and the power (2.1 kW forl =420 mm) is quite small.

### **4 SEXTUPOLE**

The sextupoles have only a lenght of 100 mm. For such a small devices the contribution of the end field are relatively high and they lead to a considerable amount of saturation. To keep this in limits we have to use an extreme cone pole shoe. The lamnitation and pole profile is given in fig. 8 and the exitation curve in fig. 9. From this figure one concludes, that it is possible to run the sextupole with a gradient up to  $g' = 800 \text{ T/m}^2$ .



Fig. 8: Lamination and pole profile for the ANKA sextupole.

| Darameter             | Unit    | TVDE Sh   | TVDE Sv    |
|-----------------------|---------|-----------|------------|
| 1 drameter            | Unit    | 11112.511 | 1112.5V    |
| Number of magnets     |         | 8         | 16         |
| Energy                | GeV     | 2.5       | 2.5        |
| Differ. Gradient (g") | $T/m^2$ | 782       | 584        |
| Magnetic length       | mm      | 120       | 120        |
| Iron length           | mm      | 100       | 100        |
| Total lenght          | mm      | 147       | 147        |
| Aperture radius       | mm      | 37.5      | 37.5       |
| Pole width (max)      | mm      | 70.0      | 70.0       |
| Ampereturns per pole  | А       | 5500      | 4108       |
| Windings per pole     |         | 24        | 24         |
| Nominal current       | А       | 229.0     | 171.0      |
| Conductor dimensions  | mm      | 7*7,Ø=3.0 | 7*7, Ø=3.0 |
| Total resistance      | mΩ      | 27.9      | 27.9       |
| Total inductance      | mH      | 4.42      | 4.42       |
| Power                 | kW      | 1.46      | 0.815      |

Table. 4: Main parameters of the ANKA sextupole.



Fig 9: Excitation curve of the ANKA-sextupole.

The contributions of the endfield and also the saturation for a 0.1 m long sextupole are observable. According to the 2D-calculations [7], the integrated sextuplole strenght is for an excitation of 6000 A•Wdg equal to 90 T/m. A rougly estimation shows that a 3 D-calculation reduces this value according to the above mentioned effects to 85 T/m. Furthermore the 2 D calculations show, that a sextupole dominate field does only exist for as radius smaller than 24 mm.

### **6 REFERENCES**

[1] H. O. Moser, et al. ANKA, A Synchroton Light Source for Microstructure Fabrication and Analysis, PAC 95, May 1-5, 1995; Dallas,

[2] D. Einfeld, J. Schaper, F. Iazzourene and H.O. Moser, Lattice and Dynamical Behavior of the Light Source ANKA, this converence,

[3] D. Einfeld, W. D. Klotz, G. Mühlhaupt, Th. Müller and R. Richter, BESSY, A 800 MeV Storage Ring Dedicated to Synchrotron Radiation, IEEE Trans on Nuclear sience, Vol. Ns-26, No 3, June 1978,

[4] R. D. Walker, D. Tommasini, D. Zangrando and D. Einfeld, Magnetic Measurement of the ELETTRA Transfer Line Magnets, Proc. EPAC 92, 24-28 March, 1992, Berlin,

[5] Design Report for the MAX II Ring, MAX Lab University of Lund, ISRN LUNTDX/NTMX-7019-SE, February 1992,

[6] T.Becker, V. Kurschuganov, D. Krämer et ol.
Prototype Development of the BESSY II Storage Ring
Magnetic Elements. PAC 1995, May 1-5, Dallas, Texas.
[7] Users Guide for the POISSON/SUPERFISH Group

of Code, Los Alamos LA-UR-87-115