Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems

Martin Dohlus DESY, Hamburg SC and CSR effects are crucial for design & simulation of BC systems CSR and related effects are challenging for EM field calculation

part 1: CSR codes

effects approaches Vlasov-Maxwell paraxial approximation 1d sub-bunch Zeuthen benchmark example

part 2: simulation of BC systems

conclusions

effects

what is different in magnetic BC systems (compared to usual LINACS)?

 r_{56} : there are dispersive sections with non-linear trajectories chirp: there is a strong linear correlation between energy and longitudinal position there is a variation of bunch shape high I_{peak} /Energy after compression

... effects

... effects

shape variation

top view (horizontal plane), color = energy

approaches

1d (or projected) sub-bunch approach	(1) (2)	retarded sources $\mathbf{E}(\mathbf{r},t) = \frac{1}{4\pi} \int \frac{\mathbf{Q}(\mathbf{r}',t')}{\ \mathbf{r}-\mathbf{r}'\ } dV' \qquad t' = t - \frac{1}{2} \ \mathbf{r} - \mathbf{r}'\ $
Maxwell-Vlasov	(3)	open boundary c
paraxial approximation	(4)	partial differential equation $\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \mathbf{E} = -\mathbf{Q}$ (closed) boundary condition

- (1) Schneidmiller, Stupakov, Emma, Borland, Dohlus, ...; ELEGANT, CSRtrack, ...
- (2) R.Li, Kabel, Dohlus, Limberg, Giannessi, Quattromini; ???, TrafiC⁴, CSRtrack, TREDI

(3) Warnock, Bassi, Ellison)

(4) Agoh, Yokoya

autor's code

Vlasov-Maxwell

Warnock, Bassi, Ellison: Progress on Vlasov Treatment ..., PAC2005

4d phase space density in beam frame: $f = f(\mathbf{r}, \mathbf{p}, s)$

2d projections $\rho(\mathbf{r},t) = \int f(\mathbf{r},\mathbf{p},\beta ct)d\mathbf{p}$ history (@ retarded time) $\tau(\mathbf{r},t) = \int p_x f(\mathbf{r},\mathbf{p},\beta ct)d\mathbf{p}$

3d charge and current density distributions: $\rho_L(\mathbf{R}, Y, t) = Q \cdot H(Y) \cdot \rho(\mathbf{r}, t)$ vertical profile (in lab frame) $J_L(\mathbf{R}, Y, t) = ...$

3d fields (by retarded source integration) $E(\mathbf{R}, Y, t)$

2d projections (weighted averaged)

 $\mathbf{E}(\mathbf{R},t) = \left\langle \mathbf{E}(\mathbf{R},Y,t)H(Y) \right\rangle_{Y \in \text{gap}}$

Lorentz force EoM in beam frame, integration of Vlasov Equation

em-field calculation with PDE? (on a grid)

the problems (direct time domain calculation):

calculation window >> bunch volume

mesh: V/ $\sigma^3 \propto 10^8$ number of time steps \propto chicane length / $\sigma \propto 10^6$

numerical dispersion

no way with explicit schemes (my personal opinion)

but: strong shielding: calculation window can be reduced neglect backward waves; Field(x,y,s,t) is a slowly function of u=s-ct

paraxial approximation: large steps in u frequency domain

paraxial approximation

T. Agoh: PhD Thesis, Dec. 2004

wave equation in time domain

accelerator coordinates x,y,s

Fourier transformation $e^{ikz} = e^{ik(s-ct)}$

weak s-dependence (forward propagation)

pipe size small compared to bend radius

relativistic particles $\gamma >> 1$

paraxial approximation for transverse em-fields

$$\frac{\partial E_{\perp}}{\partial s} = \frac{i}{2k} \left[\left(\nabla_{\perp}^{2} + \frac{2k^{2}x}{\rho} \right) E_{\perp} - \mu_{0} \nabla_{\perp} J_{0} \right] \quad \rightarrow \quad E_{s} = \frac{i}{k} \left[\frac{\partial^{2} E_{x}}{\partial x^{2}} + \frac{\partial^{2} E_{y}}{\partial y^{2}} - \mu_{0} J_{0} \right]$$

... paraxial approximation

T. Agoh: PhD Thesis, Dec. 2004

advantages:

(curved) rectangular beam-pipes defined by coordinate planes bending radius needs not to be constant mesh based computation (explicit, frequency by frequency) resistive wall effects

generalization to arbitrary transverse cross-sections and smooth variation of longitudinal profile

problems:

free space or large chamber \checkmark non smooth variations \rightarrow stimulation of backward waves distributions with fine structure

special care:

singularity of 1d beams transverse beam dimensions & SC effects variation of bunch shape

"CSR" codes: 1d

$$\dot{\mathbf{p}}_{\nu} = q \left(\mathbf{e}_{\nu \parallel} E^{(\lambda)}(s_{\nu}, t) + \mathbf{v}_{\nu} \times \mathbf{B}^{(\text{ext})} \right)$$

some physics is missing

no transverse self-forces

no transverse dimensions, rigid 1d charge distribution:

$$\lambda^{(\delta)}(s-t_0c) = \sum q_{\nu}\delta((s-t_0c) - (s_{\nu} - s))$$

$$\lambda(s-t_0c) = \lambda^{(\delta)}(s-t_0c) \otimes (g(s/\sigma)/\sigma)$$

no SC effect, 1d E-field without γ^{-2} singularity:

 $E^{(\lambda)}(s,t_0) = \int \lambda'(u+s-ct_0)K(s,u)du$

no transverse dependency of longitudinal forces

very low numerical effort

... "CSR" codes: 1d

- e.g. CSRtrack-1d
- a) trajectory: general sequences of arcs and lines
- b) shielding: PEC planes
- c) smoothing:

crucial for suppression of artificial μ -bunch effects sub-bunches & density dependent adaptive filters

"CSR" codes: sub-bunch approach

reduction of effort: calculation of sub-bunches

in general: 3d sub-bunch needs 3d integration $\mathbf{E}(\mathbf{r},t) = \int \frac{\mathbf{Q}(\mathbf{r}',t')}{\|\mathbf{r}-\mathbf{r}'\|} dV'$

reduction of effort: EM field on mesh

... "CSR" codes: sub-bunch approach

scaling of effort (simplified)

Zeuthen benchmark chicane

ICFA Beam Dynamics Mini-Workshop, Berlin-Zeuthen 2002, http://www.desy.de/csr

			C	CSR	work	shc	p	200)2
Vorkshop	Benchmark	Elegant	P. Emma Prog.	R. Li Prog	I. TraFiC4	Tredi	Info /	Contact	Link
The example of the LCLS and more pr Click on the	e consists of a s 5 (at 5 GeV) or actical issues. T graphics to dov	imple four-b TESLA XFI he compres vnload a MA	end chicane with pa EL (at 500 MeV). It sor is depicted in the D input deck.	rameters simil is meant to be : figure below	ar to the one : a compromis and its parar	required for e between neters are g	r the comj academic jathered in	pression sta benchmark n the first tal	ges ting ble.
		B1	B2	B3	L ₀	B4	*		
	Parameters				Symbol	Value	Unit		
	Bend magnet l	ength (proje	cted)		L _b	0.5	m		
	Drift length B1		L ₀	5.0	m				
	Drift length B2	:->B3			L_i	1.0	m		
	Post chicane d	lrift			$\mathtt{L}_{\mathbf{f}}$	2.0	m		
	Bend radius of each dipole magnet				R	10.35	m		
	Bending Angle		φ	2.77	deg				
	Momentum compaction				R ₅₆	-25	mm		
	2nd order momentum compaction				T ₅₆₆	+37.5	mm		
	Total projecte	d length of c	hicane		L_{tot}	13.0	m		
	Vertical half ga	ap of bends			g	2.5,5	mm		

computed by many CSR codes
 still a reference for new developments
 e.g. Maxwell-Vlasov solver

The electron beam description:

The input electron beam will test two different examples: (1) a uniform, and (2) a Gaussian distribution for the temporal profile, where the initial rms length is the same in both case (FWHM_{uniform}=2Sqrt[3]*rms). The transverse phasespace is assumed to be gaussian in either case. The beam should have a perfectly linear time-energy "chirp" (the bunch head has lower energy than the tail). Therefore the time and energy distribution will be identical. In addition a very small uncorrelated ("slice") energy spread should be added with, for example, a Gaussian distribution.

Parameter	Symbol	Value	Unit
Nominal energy	E ₀	0.5/5.0	GeV
bunch charge	Q	0.5, 1.0	nC
incoherent rms energy spread	(ΔE),,	10	keV

energy = 500 MeV / 5GeV charge = 0.5 nC or 1nC compression factor = 10 $(600 \text{ A} \rightarrow 6 \text{ kA})$ shape = Gaussian / rectangular

... Zeuthen benchmark chicane

longitudinal phase space

5GeV, 1nC, Gaussian

... Zeuthen benchmark chicane horizontal phase space

5GeV, 1nC, Gaussian

agreement between 1d and sub-bunch methods: projected emittance slice emittance

> but: 500 MeV, 1nC, trapezoid (stronger SC effects)

significant differences between 1d and sub-bunch methods: projected emittance: 5 compared to 3 slice emittance:

part 1: CSR codes

part 2: simulation of BC systems

physical & numerical problems
example: SC effects after last BC
piecewise tracking, codes & tools
µ bunching
particle distributions
non linear effects in longitudinal phase space
examples: rollover compression
linearized compression
compensation in 2BC systems

conclusions

more physical & numerical problems

physical numerical

- tracking with different methods (different particle descriptions)
- particle description (macro particles, ensembles, sub-bunch distributions phase space density)
- µ-bunching → laser heater
 → decoupled investigation → amplification
 → noise suppression
 - longitudinal sensitivity \rightarrow a) controlled compression \rightarrow b) "over" compression
 - transverse: space charge Q shift

example: SC effects after last BC

European XFEL:

negative chirp compensated by LINAC wakes positive chirp induced by space charge !

piecewise tracking, codes & tools

. . .

. . .

linear trajectory codes (=LT codes)

Runge-Kutta tracker + Poisson solver PARMELA, ASTRA, GPT, ... or ELEGANT + external SC calculation

CSR codes

utility programs

Trafic4, TREDI, CSRtrack, Elegant,

conversions simple manipulations

M

µ-bunching - amplification

picture based on: Z. Huang FLS2006

impedances (steady state):

$$Z'_{sc}(k,\gamma,...) \propto \frac{ik}{\gamma^2} \ln\left(\frac{\gamma}{k\sigma_r}\right)$$
$$Z'_{CSR}(k,R_{curv}) \propto \sqrt[3]{\frac{k}{iR_{curv}^2}}$$

"SC-instability"

"CSR-instability"

\dots µ-bunching - amplification

proposed by E. Schneidmiller 2002

picture based on: Z. Huang FLS2006

'laser heater' System (LCLS layout)

... µ-bunching - amplification numerical aspects

1) it is difficult to simulate macroscopic & microscopic effects together (very high resolution, very many particles required)

2) \rightarrow separate investigation of μ -bunching

CSR: integral equation method (limited applicability) projected method: modulated beam, 1- and 2-stage compression SC: impedance + r56

example: European XFEL

3) s2e simulations without μ structure:

avoid artificial instability

e.g. due to shot noise of few macro-particles \rightarrow noise reduction

particle distribution

- use one particle set for complete simulation if possible!
- from injector simulation: N ~ 10⁵ ... 10⁶ equal charged particles (semi)random in 6d phase space
- N is no problem for LT-codes and 1d-CSR codes;
 N is possible with sub-bunch CSR codes with mesh + parallel processing no hope for CSR codes with particle to particle interaction
- noise is a problem in general

1d: binning, filtering, density adaptive methods mesh: use enough particles per cell

• 'image' technique

create a 'image' distribution that has all essential properties of the original particle set but is smooth; track image distribution with self interactions; track original particles in the field of the 'image';

non linear effects in long. phase space

'controlled' or linearized compression 'rollover' compression

... rollover compression example: FLASH s2e simulation

controlled compression example: European XFEL

example: European XFEL

example: European XFEL

after BC2

after collimator

compensation in 2-bc systems shielding & resistive walls

Conclusion

part II

- effects in BC systems are challenging (many physical effects are involved)
- \bullet $\mu\text{-bunching}$ effects beyond the resolution of non-1d-codes
- several types of codes needed (LT- and CSR-codes)

part I

- 1d- and sub-bunch codes are available Vlasov-Maxwell approach and paraxial approximation under development
- resolution of sub-bunch method increased
- 'CSR' methods cover all important physical effects (SC, CSR, shape variation, shielding, resistive walls)

in reach: code that covers all effects

