

Demonstration of Energy Gain Larger than 10GeV in a Plasma Wakefield Accelerator

Patric Muggli University of Southern California Los Angeles, USA muggli@usc.edu

THANK YOU to my colleagues of the *E-167* Collaboration:

I. Blumenfeld, F.-J. Decker, P. Emma, M. J. Hogan, R. Iverson, R. Ischebeck, N.A. Kirby, P. Krejcik, R.H. Siemann, D. Walz Stanford Linear Accelerator Center

D. Auerbach, C. E. Clayton, C. Huang, C. Joshi, K. A. Marsh, W. B. Mori, W. Lu, M. Zhou University of California, Los Angeles

> T. Katsouleas, E. Oz, P. Muggli University of Southern California

and of the *E-157/162/164/164X* Collaborations

THANK YOU to SLAC

➡ Introduction to plasma wakefield accelerator (PWFA)

Experimental setup

🛑 e^{_} energy gain

Summary/Conclusions

MOTIVATION

- Could an accelerating structure with a gradient significantly larger (×10, ..., ×1000) than that reached in present rf cavities (<200 MV/m) be created and can it lead to large energy gain (1-100 GeV)?
 - Plasmas can sustain very large electric fields (10-100 GV/m)
 - Relativistic plasma waves or wakes: E//k, electrostatic
 - No fabricated structure
 - Operation a very high frequency (THz), high gradient
- Laser-driven plasma accelerator: high charge, control and stability (V. Malka, Monday)

beam-driven, plasma wakefield accelerator or PWFA

- Plasma wave/wake excited by a relativistic particle bunch
- Plasma e⁻ expelled by space charge forces => energy loss + focusing
- Plasma e⁻ rush back on axis
 => energy gain
- Extract energy from the front, transfer to the back
- Focusing + acceleration = large energy gain
- Single bunch => particles at all phases

Patric Muggli, EPAC'06 06/28/06

ICLA

Patric Muggli, EPAC'06 06/28/06

UCLA

"PLASMA SOURCE"

Patric Muggli, EPAC'06 06/28/06

UCL

 E_0 =28.5 GeV, n_e =2.7×10¹⁷cm⁻³

- → Largest gain with $n_e = 2.6 \times 10^{17} \text{ cm}^{-3}$ (∀ L_p, for $\sigma_z \approx 20 \mu \text{m}$)
- Accelerating gradient of 36 GV/m over L_p=31 cm (unloaded: 7% accelerated charge)

Energy gain 38 GeV over ~90 cm of plasma! or 42GV/m!
PWFA = extremely simple and compact accelerator

- First plasma accelerator with >1GeV energy gain
 - ✤ Energy gain up to 38 GeV in ≈90 cm, 42 GV/m over 90 cm
 - Measured important scalings:

Bunch length: σ_z =730 μm W=200 MV/m, σ_z ≈20 μm W=42 GV/m Optimum plasma density: n_e =1.8x10¹⁴ cm⁻³ n_e =2.6x10¹⁷ cm⁻³ Plasma length: 13.6 GeV 31 cm (E₀=28.5 GeV), 38 GeV, 85 cm, (E₀=42 GeV)

- Energy gain increases linearly with plasma length
- Stable and reproducible acceleration

Next steps:

≻Two-bunch experiment (ΔE/E<1)≻High-gradient positrons acceleration

PLASMA AFTERBURNER

S. Lee *et al.*, PRST-AB (2001)

Double the gradient and reduce size? Double the energy and extend the energy frontier?

Energy gain increases with plasma length (L_p)

FUTURE RESEARCH

e+ wake gradient, emittance growth in plasma

- Hollow plasma channel
- More stringent beam parameters

- (over 1.4 m)
- Gain ≈ 75 MeV
- Plasmas do accelerate e⁺
- Excellent agreement with simulations!

PRL 90, 214801, (2003)

USC

FUTURE RESEARCH

Plasma ions motion (J. B. Rosenzweig, et al. PRL. 95, 195002 (2005))

- Significant when $n_b/n_e >> 1$
- Degrades beam emittace and focusing
- Improves with: larger σ_r , higher ϵ , higher A, etc.

Synchrotron radiation, beam plasma matching

- \rightarrow Preservation of emittance and polarization (<< x_0)
- Evolution, stability of the bunch/wake over long plasma lengths
- \rightarrow Real accelerator: beam loading, optimization, ...

Patric Muggli, EPAC'06 06/28/06

Energy gain increases bunch peak current or σ_z^{-1} Energy gain reaches 13? GeV with $L_p=31$ cm!

- Decreases with beam radius r_0 (compromise with ions motion)
- Negligible when compared to accelerating gradient (≈10 GV/m)
- Interesting as a source of gamma rays for positron production? (D.K. Johnson, PAC'05 and PRL to come)

Large energy loss and gain, as expected

CONCLUSIONS

ACCELOR ACCELOR INCLUSION INCL

Next E-167 run:

- Double the energy of 43GeV e⁻
- Beyond energy doubling?
- Two-bunch experiment
- SABER will be a great facility to study:
 - e+-beam-plasma physics
 - Ionization/wake excitation by e+, hollow plasmas
 - γ-ray source/e⁺ source, polarized?
 - Radiation from e⁺ in plasmas?
- Possible new experiments at SABER :
 - Focusing/plasma lens
 - Ion channel laser
 - Ion motion in PWFA
 - Beam loading (ϵ ?, Δ E/E?, ...)
 - ... and much more

e⁺ PLASMA FOCUSING

E-150: J.S.T Ng et al., PRL 2001

FIG. 1. Schematic layout of the SLAC Plasma Lens experiment at the FFTB. "Final Quads" are conventional focusing quadrupole magnets. The positron beam is deflected towards the dump by the magnetic dipole.

Plasmas lens experiment

x: B_{θ}/r≈0.7T/µm, f=34mm y: B_{θ}/r≈4T/µm, f=1.6mm L_p=3 mm n_e=5x10¹⁷ cm⁻³>n_b=2x10¹⁶ cm⁻³

Plasmas do focus e⁺

FIG. 3. Measured beam envelope Gaussian widths in the x and y dimensions, with and without plasma focusing. Inner error bars indicate the statistical uncertainty, and outer error bars indicate the quadrature sum of statistical and systematic uncertainties. The curves represent the particle-in-cell simulations.

FOCUSING OF e⁻/e⁺

• OTR images ≈ 1 m from plasma exit ($\varepsilon_x \neq \varepsilon_v$)

 $n_e \approx 10^{14} \text{ cm}^{-3}$

 Ideal Plasma Lens in Blow-Out Regime

 Plasma Lens with Aberrations

Patric Muggli, EPAC'06 06/28/06

 E_0 =28.5 GeV, n_e =2.7×10¹⁷ cm⁻³

- Trapping above a threshold wake amplitude ≈7GV/m
- Excess charge of the order of the beam incoming charge (1.6x10¹⁰ e⁻)
- Evidence for two (or more) short bunches of trapped particles

Courtesy Erdem Oz, USC

• High-energy, narrow $\Delta E/E$ trapped particle bunches

SCIENCE TOPICS FOR SABER

SABER:

- Short (σ_z <30 μ m) e⁻ and e⁺ bunches
- High peak current (>10kA, N≈2x10¹⁰/bunch)
- Small ($\sigma_{x,y}$ <10 μ m) transverse size

Topics:

- e+-beam/plasma physics
- Beyond energy doubling?
- Ionization/wake excitation by e+, hollow plasmas
- Transport/acceleration in long plasmas (e⁻/e⁺)
- Beam quality (ϵ ?, $\Delta E/E$?, ...), ion motion
- Beam/plasma matching
- γ-ray source/e⁺ source
- Radiation from e+ in plasmas
- Focusing/plasma lens
- 2-bunch experiments/head erosion/stability
- Hollow plasmas for e⁺ beams
- Experiments fo early SABER?

e⁺ PLASMA FOCUSING

E-150: J.S.T Ng et al., PRL 2001

FIG. 3. Measured beam envelope Gaussian widths in the x and y dimensions, with and without plasma focusing. Inner error bars indicate the statistical uncertainty, and outer error bars indicate the quadrature sum of statistical and systematic uncertainties. The curves represent the particle-in-cell simulations.

M.J. Hogan et al., PRL 2006

FIG. 1 (color). Time-integrated measurements of the positron beam spot size in the x direction vs n_e from the two profile monitors downstream of the plasma exit. The symbols at zero density are the mean no-plasma spot sizes at the Cherenkov radiator (Δ) and OTR (∇) for 50 pulses. The bars indicate the error of the mean.

Plasmas do focus e⁺

- Could an accelerating structure with a gradient significantly larger (×10, ..., ×1000) than that reached in present rf cavities be created and can it lead to large energy gain (1-100 GeV)?
 - ILC: 35-45 MV/m → 28-23 km for 1 TeV!
 - CLIC: 150 MV/m \rightarrow 7 km for 1 TeV!
- Could such a structure be used to produce high-quality e⁻/e⁺ beams?
 - E≈GeV/TeV, ΔE/E<<1, ε<<1, …
- Could such a structure be made of PLASMA?

WHY PLASMA?

- Plasmas can sustain very large electric fields (10-100 GV/m)
 - Relativistic plasma waves or wakes: E//k, electrostatic
 - Exist for a a short time (few wave periods)
 - Already ionized (HI: 13.6 eV, LiI: 5.4 eV, LiII: 75 eV)

Accelerating "structure" or wake is sustained by the plasma

- No fabricated structure
- Operation a very high frequency (THz)
- No damage to the structure

beam-driven, plasma wakefield accelerator or PWFA

PROPAGATION OF **e**⁻

Beam Envelope Model for Plasma Focusing

Multiple foci (betatron oscillation) within the plasma
 Synchroton "betatron" radiation

Patric Muggli, EPAC'06 06/28/06

Positron Production from Betatron X-rays

- Plasma ion column acts as a "Plasma Wiggler" lead to X-ray synchrotron radiation.
- X-ray synchrotron radiation from electrons betatron oscillations.

2-BUNCH GENERATION

Notch collimator in the dispersive region of the FFTB dogleg

Notch Collimator

Patric Muggli, EPAC'06 06/28/06

IS