LHC Luminosity

and Energy Upgrade

Walter Scandale CERN

Accelerator Technology department

EPAC 06 27 June 2006

We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395).

Parameter [units]	Nominal	Ultimate	Short bunch	Long bunch
No. of bunches n _b	2808	2808	5616	936
$p^{+} \times bunch N_{b} [10^{11}]$	1.15	1.7	1.7	6.0
Bunch spacing Δt_{sep} [ns]	25	25	12.5	75
Beam current [A]	0.58	0.86	1.72	1.0
E _{beam} [MJ]	366	541	1085	631
Beta at IP ß* [m]	0.55	0.50	0.25	0.25
Xing angle θ_c [μ rad]	285	315	445	430
Bunch length [cm]	7.55	7.55	3.78	14.4
Piwinski ratio $\theta_{c} \sigma_{s}/(2\sigma^{*})$	0.64	0.75	0.75	2.8
L lifetime $ au_L$ [h]	15	10	6.5	4.5
L_{peak} [10 ³⁴ cm ⁻² s ⁻¹]	1.0	2.3	9.2	8.9
T _{turnaround} [h]	10	10	5	5
Events per Xing	19.2	44.2	88	510
\int one year $L dt$ [fb ⁻¹]	66.2	131	560	410

 ε_n = 3.75 mm in all the options

LHC luminosity upgrade: why and when?

How fast performance is expected to increase:

- ♦ 4 y up to nominal L
- 4 y up to nominal L & 2 y up to ultimate L
- 4 y up to ultimate

- ♦ I R quadrupole lifetime
 ≥ 8 years owing to high radiation doses
- halving time of the statistical error ≥ 5 y already after 4-5 y of operation
- luminosity upgrade to be planned by the middle of next decade

27 June 2006 - EPAC 06

W.Scandale, LHC luminosity and energy upgrades

Bunch scheme

Baseline for luminosity upgrade (short bunches)

Collisions with full crossing angle θ_c reduce the luminosity *L* and the beam-beam linear tune shift ΔQ_{bb} by the geometric factor *F* $L_{xing} = L_{head-on} \times F$, $\Delta Q_{bb} = \xi_x + \xi_z \approx \frac{N_b r_p}{2\pi\varepsilon_n} \times F$, $F \approx 1/\sqrt{1 + \left(\frac{\theta_c \sigma_z}{2\sigma^*}\right)^2}$

maximize L (below beam-beam limit) \Rightarrow short bunches & minimum θ_c

27 June 2006 - EPAC 06

Minimal crossing angle

$$\begin{split} & \left[\xi_{head-on} = \frac{N_b r_p}{4 \pi \gamma \varepsilon}, \quad \xi_{long-range} = \pm 2n_{par} \, \frac{\xi_{head-on}}{\left(d/\sigma \right)^2} \right] \\ & \text{relative beam-beam separation} \quad \frac{d}{\sigma} \approx \theta_c \sqrt{\frac{\gamma \beta^*}{\varepsilon_n}} \end{split}$$

Beam-Beam Long-Range collisions:

- perturb motion at large betatron amplitudes
- cause 'diffusive' (or dynamic) aperture, high background, poor beam lifetime
- require larger crossing angles to preserve dynamic aperture
- require shorter bunches to avoid geometric luminosity loss

empiric formula of the diffusive aperture

$$\frac{d_{da}}{\sigma} \approx \frac{\theta_c}{\sigma_{\theta}} - 3\sqrt{\frac{n_{par}}{2 \times 32}} \times \frac{N_b}{10^{11}} \times \frac{3.75 \mu m}{\varepsilon_n}$$
$$\Rightarrow \frac{\theta_c}{\sigma_{\theta}} \approx 6 + 3\sqrt{\frac{I}{0.5A}} \times \frac{3.75 \mu m}{\varepsilon_n}, \text{ with } \sigma_{\theta} = \sqrt{\frac{\varepsilon_n}{\gamma \beta^*}}$$

At the beam-beam limit the brilliance N_b / ε_n can be expressed in terms of ΔQ_{bb}

$$L \approx \frac{\gamma}{2r_p} \times \frac{\Delta Q_{bb}I}{\beta^*} \approx \frac{\pi \gamma f}{r_p^2} \frac{\Delta Q_{bb}^2 \varepsilon_n n_b}{\beta^*} \sqrt{1 + \left(\frac{\theta_c \sigma_s}{2\sigma^*}\right)^2}$$

maximize L (at the beam-beam limit) \Rightarrow long bunches & large θ_c

Condition: I and N_b/ϵ_n not limited in the injectors neither in LHC (e.g. by e-cloud)

At high beam intensities or for large emittances, the performance will be limited by the angular triplet aperture A_{tripl}

$$L \approx \frac{\gamma}{2r_p} \Delta Q_{bb} I \times \min\left\{\frac{1}{\beta^*}, \frac{1}{\varepsilon} \left(\frac{A_{tripl}}{20 + \theta_c} / \sigma_{\theta}\right)\right\}$$

maximize magnet aperture,

WEPCH104 and 138

minimize distance to IP

The main goal is to reduce β^* by at least a factor 2

Options for magnet technology:

- NbTi 'cheap' upgrade, NbTi(Ta) (assessed technology, modest improvement)
- Nb₃Sn new IR magnets (new technology, consistent improvement)

factors driving IR design:

- minimize β^*
- minimize effect of LR collisions
- sustain large radiation power directed towards the IR magnets
- accommodate crab cavities and/or beam-beam compensators.
- Iocal Q' compensation scheme?
- compatibility with upgrade path variants:
- quadrupole first
- dipole first
- flat beams with doublets or triplets (luminosity gain up to 30 %)
- D0 scheme (a dipole very close to IP) to reduce θ_c and increase F
- Slim quadrappoles (low gradient quadrupoles close to IP) to reduce eta_{peak} <
- reduced to minimize β_{peak}

27 June 2006 - EPAC 06

– WEPCH094

WEPCH044

short bunches & minimum crossing angle & BBLR

• collision debris hit D1

'cheap' I R upgrade in case we need to double LHC luminosity earlier than foreseen

Phase O: steps to reach ultimate performance without hardware changes:

- 1) collide beams only in IP1 and IP5 with alternating H-V crossing
- 2) increase N_b up to the beam-beam limit $\rightarrow L = 2.3 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- 3) increase the dipole field from 8.33 to 9 T $\rightarrow E_{max} = 7.54$ TeV

The ultimate dipole field of 9 T corresponds to a beam current limited by cryogenics and/or by beam dump/machine protection considerations.

- Present bottle-neck of the injector complex
 - → The SPS (capture loss, longitudinal stability)
 - → The BPS (space charge)
- Best possible choice for upgrade in energy
 - → The linac (synergy with neutrino-physics needs)
 - The SPS (synergy with neutrino and flavour physics ? prerequisite for LHC energy upgrade)

however a PS (at 50 GeV) turns out to be the best choice for CERN especially if the PS magnet consolidation program is not a reliable long term solution

- → the right move towards the (high-priority) LHC performance upgrade
- → an opportunity to develop new fast pulsing SC magnets (for a superconducting PS+ option)
- The 1TeV superconducting SPS should remain the strategic objective
- The real benefit of any proposed upgrade should be fully quantified

Increasing the PS energy will make much easier to operate the SPS

27 June 2006 - EPAC 06

- factor of 2.3 on L at the ultimate beam intensity ($I = 0.58 \rightarrow 0.86 \text{ A}$)
- factor of 2 on L from new low- β ($\beta^* = 0.5 \rightarrow 0.25$ m)

 \odot $T_{turnaround} = 10h \rightarrow \int Ldt = 3 \times nominal = 200 \text{ fb}^{-1} \text{ per year}$

 factor of 2 on L doubling the number of bunches (may be impossible due to e-cloud) or increasing bunch intensity and bunch length

 \odot $T_{turnaround}$ = 10h $\rightarrow \int Ldt$ = 6 × nominal = 400 fb⁻¹ per year Consolidation of injectors and completion of LHC

Linac 4 & PS2/PS+

A new SPS & transfer lines injecting in LHC at 1 TeV/c

- factor of 1.4 in $\int Ldt$ for shorter $T_{turnaround} = 5 h$
- factor of 2 on L (2 × bunch intensity, 2 × emittance)

 \bigcirc L = 10³⁵ cm⁻²s⁻¹ AND $\int Ldt = 9 \times \text{nominal} = 600 \text{ fb}^{-1} \text{ per year}$

- A vigorous R & D programme is required on
- optics, beam control, machine protection, collimation
- high gradient high aperture SC quadrupoles
 - → Nb₃Sn SC wire and cable
 - → radiation-hard design
- RF & crab-cavities
- SC fast ramping magnets
 - → Nb-Ti SC wire and cable
 - → High speed energy removal & radiation-hard design
- for energy upgrade
 - \rightarrow Nb₃Sn SC wire and cable high field (> 15 T)
 - → Low cost SC & magnets
- detector upgrade should be planned to handle higher L and larger radiation level

Time-scale required 10-12 years→ START as soon as possible !