DAΦNE Experience with Negative Momentum Compaction Factor

M.Zobov, D.Alesini, M.Biagini, A.Drago, A.Gallo, C.Milardi, P.Raimondi, B.Spataro, A.Stella

> 10th European Particle Accelerator Conference EPAC06, Edinburgh, UK - June 26-30, 2006

OUTLINE

- DA Φ NE and potential advantages of α_c <0
- Lattice Modifications
- Beam Dynamics
 - a) Bunch Shortening
 - b) High Current Multibunch Operation
 - c) First Beam-Beam Collisions
- Limitations and Ways to Overcome Them

DAONE Parameters (KLOE configuration)

Energy, GeV	0.51
Circumference, m	97.69
RF Frequency, MHz	368.26
Harmonic Number	120
Damping Time, ms	17.8/36.0
Bunch Length, cm	1-3
Emittance, mmxmrad	0.34
Coupling, %	0.2-0.3
Beta Function at IP, m	1.7/0.017
Max. Tune Shifts	.0304
Number of Bunches	111
Max.Beam Currents, A	2.4/1.4

Best Daily Integrated Luminosity

A. Gallo et al., "DAΦNE Status Report" → MOPLS028

Potential Advantages for a Collider

- Shorter bunch -> Higher luminosity
 - L scales with $1/\sigma_z$ if $\beta_{x,y}$ are reduced proportionally to σ_z
 - Piwinski's angle ('badness factor') $\theta = \phi \sigma_z / \sigma_x$ is lower
- Longitudinal beam-beam effects are less dangerous (V. V. Danilov et al., HEACC 1992)
 - No coherent and incoherent instabilities
 - Synchro-betatron resonances
- Single bunch is stable with negative 'natural' chromaticity (100 mA in SuperAco without sextupoles)
 - Lower sextupole strenghts -> larger dynamic aperture
 - Higher instability thresholds

Beam-Beam Tails in DAΦNE with Crabbed Waist (proposed by P. Raimondi)

Purpose of Experiment with α_c <0 at DA Φ NE

- Prove bunch shortening by wake fields and investigate microwave instability
- Check reliability of the DA Φ NE lattice model
- Study high current multibunch dynamics*
- Try beam-beam collisions*

*For the first time

Positron Ring Optical Functions

Beta Functions

Horizontal Dispersion

Electron Ring Optical Functions

Beta Functions

Horizontal Dispersion

Second Order Dispersion

Bunch Shortening in the Positron Ring

Bunch Shortening in the Electron Ring

COMPARISON with SIMULATIONS

Bunch Length

Charge Distribution at I = 5 mA

 $\alpha_{\rm c}$ = - 0.036

Single Bunch (positron ring)

- At I = 15 mA bunch is stable, no evidence of any sidebands
- I > 40 mA is stored in a single bunch with chromaticities $\xi x = -6$ and $\xi y = -2$
- With all sextupoles switched off the lifetime is low due to the wiggler sextupolar components

DAΦNE RF Cavity Tuning

- 1) Change of the RF phase by about 170 degree (1.3 ns), since the synchronous phase is on the positive slope of the RF voltage;
- 2) Readjustment of the tuning loop to get a certain initial positive detuning of the accelerating mode.

Electron Ring Feedbacks Tuning

- –<u>All feedbacks off</u>-> max beam current 400mA in 100 bunches, 16 mA in single bunch
- <u>Long.feedback</u> -> "standard" FIR filter
 (broadband, "low gain"): very good control of motions after frontend and backend retiming
- <u>Vertical feedback</u>: necessary only frontend and backend retiming to control motion
- Horizontal feedback: no motion
- —<u>All feedbacks on</u> -> ~1 A stored in 100 bunches, limited by injection (no instabilities)

Positron Ring Feedbacks Tuning

- <u>Long.feedback</u> -> "standard" FIR filter (broadband, "low gain"): very good control of motions after frontend and backend retiming
- <u>Vertical feedback</u>: necessary only front-end and backend retiming to control motion
- <u>Horizontal feedback</u>: necessary only frontend and backend retiming to damp the horizontal instability
- <u>With feedbacks on</u> -> <1 A stored in 100 bunches, limited by injection (no instabilities)

Beam-Beam Luminosity Scan

Stand.Dev

1.12E+0

22E-3

∆ Std Dev rms

Max Position

∆ Max Pos rms

Scale Factor

∆ Scale Fct rms

Chi square

2.94E+2

8.889E+1

3.0 3.3E-1

1.405E-1

2.8E-3

- The best $\Sigma_{x,y}$ achieved \longrightarrow 8.2 µm; 1.0 mm
- Electron coupling $\longrightarrow 0.2\%$ (better than now)
- Positron coupling slightly worser (shifted sextupole!)

Luminosity with $\alpha_c = -0.02$

Main Limitation

Strong correlation between the longitudinal microwave instability and the vertical size blow up has been found

Possible Solution

A possible solution to overcome the limitation is to shift the microwave threshold beyond the nominal bunch current

Two ways are under study:

- 1) Removal of 2 m long ion clearing electrodes in wiggler sections which account for almost half of the electron ring impedance budget;
- 2) Application of collider optics with higher absolute value of the negative momentum compaction factor

Microwave Instability Threshold Increase

 $I_{th} \propto \alpha_c^{3/2} V_{RF}^{1/2} \rightarrow 3$

The same threshold with positive and negative α_c

Summary (1)

- DA Φ NE optics model has proven to be reliable in providing collider operation with α_c ranging from +0.034 to -0.036
- With α_c< 0 bunches shorten as predicted by numerical simulations. High bunch currents can be stored with high negative chromaticities
- No hard limit has been seen in multibunch operation. About 1 A stable beams have been stored in both rings

Summary (2)

- At beam currents up to 300 mA/beam a good specific luminosity has been obtained in beambeam collisions
- Higher current collisions have been prevented by fast growth of the electron beam vertical size with current (single beam effect)
- We hope to overcome this limitation by reducing the electron ring coupling impedance and/or applying negative momentum compaction optics with higher $|\alpha_c|$.