

Ionization Profile Monitoring at the Tevatron

Andreas Jansson

K.Bowie, T.Fitzpatrick, R.Kwarciany, C.Lundberg, D.Slimmer, L.Valerio, J.Zagel **Fermilab**

Also thanks to:

T.Anderson, M.Bowden, A.Bross, A. Chen, R.Dysert, S.McCormick, S. Suleimani, H.Nguyen, C.Rivetta, H.Glass, D.Harding, B.Hively, V. Kashikin, D.Miller, Z.Tang, J.Volk, T.Zimmermann, ...

- Instrument Design
- First beam results
- Results after recent shutdown

GOAL:

Measure protons and pbar beam size turn by turn at injection and ramp to diagnose and mitigate emittance blow-up.

Challenges in the Fevatron

Challenge:

• Two small beams separated by helix.

06

- Separate protons from pbars, injected from circulating beam
- Beam induced parasitic signals.
- Low vacuum pressure

Solutions:

- Fine granularity and many channels
- Single bunch resolution and gating
- I mproved shielding and matched cables
- Local pressure bump with controlled leak

June 26, 2006

Ionization Profile Monitoring at the Tevatron

A. Jansson

- ¼ mm strip pitch
- 200 channels (128 instrumented)
- Board mounted series resistor for backtermination and LP filtering.
- In-vacuum signal cabling using UHV-compatible flex-circuits
- High resolution area can be moved by swapping connectors

- Max gain with 36 proton bunches is ~1e4 to avoid saturation.
- Can be achieved with single plate
- With dual plates, each plate would run at a very low gain and low bias current.
- Use single MCP with extra-high bias current.

Magnets, vacuum chambers etc installed during 2004 shutdown.

First detector installed December 2005.

Both detectors (re)installed spring 2006 shutdown.

- CMS-QIE chip digitizes signal in tunnel.
- Serial data uplink on optical fiber.
- Receiver and data buffer in upstairs PC
- Timing + QI E clock + QI E clock supplied from PC thru cat-5E cable

- Charge Integrating Encoder (QIE) developed at Fermilab. Used by KTeV, CDF, Minos, CMS...
- Frequency range 7-53 MHz
- Essentially no deadtime.
- LSB 2.6fC (16000e) in logarithmic mode, 0.9fC (6000e) in linear mode
- Dynamic range >10⁴ in logarithmic mode
- Noise of O(1fC)
- Radiation "tolerant"

design: T. Zimmerman

- 8 channels (CMS QI E8) per board.
- Achieved noise ~1.8fC with 4' cable.
- Data is combined with timing information, serialized by CERN GOL ASIC (rad hard) and sent thru optical fiber at 1.1Gbps data rate
- Timing fanout board cleans up and distributes clock and timing signals

- Handles 8 incoming optical links (64 channels, 1.1 GB/s of data)
- Can sparsify data on-thefly based on timing masks
- 512MB RAM allows for
 - 20.000 turns of continuous data
 - 90.000 turns for 72 bunches
 - <u>6 million turns</u> for a single bunch
- Read out thru PCI 64 bus.
- Two boards are used to handle 128 channels.

- IPM buffer board doubled as prototype for BTeV L1 data buffer.
- Considered for use in MICE experiment.

RF

- Produces the 15MHz (2/7 RF) QI E clock
- Decodes and transmits beamsync revolution marker + injection and trigger events
- Controls QIE settings.

- 2005 shutdown moved to 2006
- Took advantage of magnet failure to install the vertical detector in Dec '05.
- Test DAQ system with 40 channels, 1cm active width, single buffer board

E0 straight section

E0 service building

14

Ionization Profile Monitoring at the Tevatron

A. Jansson

 First data taken at 980GeV during store 4634 without magnetic field.

A. Jansson

- Sparking problems prevented running at full fields (25% B, 70% E).
- Profile widening due to large Larmor radius of electrons
- Measured resolution at 50A is 0.5 mm

June 26, 2006

Ionization Profile Monitoring at the Tevatron A. Jansson

NOTE: Detector centered on proton orbit

June 26, 2006

Proton profiles 16 turns before injecting P36

Ionization Profile Monitoring at the Tevatron A. Jansson 19

Bunch #36 turn-by-turn

Magnet at 50A

Ionization Profile Monitoring at the Tevatron

Store #4642

June 26, 2006

Raw profile width

A. Jansson

- Vertical detector removed to fix vacuum and sparking problems. Reinstalled.
- Horizontal detector installed.
- Both systems initially instrumented with 40 out of 128 channels (1cm active width).

- Proton bunch #22 at 150GeV during store #4772.
- Measured beam size 1.05mm, turn-by-turn variation ~50um.
- Total signal per bunch ~1.7pC.

Single bunch proton profiles

Magnet at 200A

A. Jansson

- Proton bunch #1 at low beta during store #4758.
- Measured beam size 0.55mm, turnby-turn variation (noise) 20µm.
- Total signal per bunch ~1.3pC.

23

Magnet at 200A

Proton bunch #21 turn-by-turn

- Measured beam size and total signal as a function of magnet current.
- Resolution due to Larmor radius ~0.1mm at 200A (2% effect for a 0.5mm beam).
- Signal increase with Bfield may be due to detection efficiency (threshold is >1 primary electron per channel).

- Measured beam size and total signal as a function of drift field (voltage).
- Negligible effect on profile width.
- Maximum signal at ~7kV drift voltage (MCP sensitivity peaks at ~3keV for electrons)

- Measured beam size and total signal as a function of tilt angle.
- No observable effect within a few mrads.

Comparison of vertical beam size from IPM and nearby Flying Wire. Tuning of abort gap cleaner timing had caused blow-up of certain bunches. From MAD lattice file, expect a 13% wider beam at Flying Wire. <u>See ~1%</u>.

- The Tevatron IPMs can measure single proton bunches turn-by-turn both at injection and top energy.
- Uses custom electronics developed for Particle Physics experiments.
- Observed sensitivity of ~20µm at 980GeV, 50-60µm at 150GeV.
- Good relative agreement with Flying Wires.
- Still some work to be done (e.g. install full readout system, measure pbars, make system more user friendly, correct the observed mismatch...).

