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Relatively long bunch ~ 0.5 – 1 ps with 
“flat” peak current distribution
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Basic requirements to the e- beam
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Small emittance

Small energy spread (for better bunching):

High peak current (for better FEL gain):
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Basic requirements to the e- beam (2)
One of the goals for HC FELs is production of 
nearly FT limit signal with a  narrow BW 

Two examples using two different electron beams

Power spectrum (courtesy 
G. Penn)
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Basic requirements to the e- beam (3)
Energy variation along the electron bunch 
causes frequency chirp in the output signal*

*) S. G. Biedron, S.V. Milton, and H.P. Freund, NIM A 475 (2001)401.
T.Shaftan et al., Phys. Rev. E, 71, (2005)046501.
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Reverse tracking
Flat-flat distribution is desirable at the end of the 
accelerator

*) M. Cornacchia

A distribution at the beginning of the accelerator 
that will evolve into flat-flat distribution can be 
found using reverse tracking* 

Flat
Flat
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Reverse tracking: justification
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Over the linac section relative electron positions are 
“frozen” and electron energy at the beginning δi is defined 
by electron energy and location at the end δf(zf)

1)

Over the magnetic chicane (buncher) electron energy is 
“frozen” (CSR excluded) and electron coordinate at the 
beginning zi is defined by the electron coordinate and 
energy at the end zf(df)

2)
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Reverse tracking: ignore CSR

Bunch length, FWHM (ps)
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Shielding of CSR by the vacuum chamber*

For “long” bunches energy losses due to CSR 
are weak at ω ~ 1/τb

*)  R.Li, C.L. Bohn, J.J. Bisongnano, Proc. PAC 97, (1997)1644.
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Reverse tracking: use of wake fields
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Ramped peak current

LiTrack: no LSC no CSR
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From ramped to flat peak current
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Next to the cathode At the end of the injector at 100 MeV

space 
charge

0.8 nC

Reverse tracking: practical distribution
Photocathode laser is used to shape the electron 
distribution in the e-gun
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For HC FEL
larger emittance in the 
tail may not be a 
problem and smaller 
emittance at the head 
can be beneficial
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Current spikes: the origin
Before bunch compressor Typical parabolic peak 

current distribution
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using x-band linearizer

Typically in the bunch compressor
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Current spikes and their removal

Cubic chirp = -8 keV/mm3 Cubic chirp = -90 keV/mm3

spikes no spikes

start start

end end

Cubic chirp can be adjusted with small 
modification in the electron density distribution 
which alters the wake fields 
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Adjustable R56 using trim quadrupoles
to provide dispersion bump
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Current spikes and their removal (2)
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Complete simulation
Example of flat-flat distribution taken from 
accelerator optimization study for 
FERMI@ELETTRA FEL* (CSR included)

*) M. Cornacchia et al., MOPCH047

Elegant
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Summary

Electron density distribution in the gun and 
along the accelerator plays important role in 
formation of electron bunches at the end of 
accelerator.

Photocathode laser can be used to provide a 
distribution suitable for given wake potential, 
such as linear ramped peak current.

Peak current spikes at the edges of the 
electron bunch can also be affected

Useful discussions with P. Emma and G. Stupakov are 
acknowledge. P. Emma also helped with LiTrack.
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Thank you for your attention
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DIPAC 2007
the 8th European Workshop on 
Beam Diagnostics and Instrumentation 
for Particle Accelerator

May 2007



A. Zholents, Edinburgh, June 2006

- 500 0 500 1000

1186

1188

1190

1192

1194

1196

1198

1200
Energy (MeV)

time (fs)

quadratic energy chirp:  E’’ ≈ (3 ± 0.4) MeV/ps2

samples of 10 randomly chosen seeds out of 400 seeds are shown
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E’’ ≈ (0.5 ± 0.07) MeV/ps2

case L2… case L4…

to be compared with  the requirement of |d2E/dt2|  < 0.2 MeV/ps2

Jitter studies


