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Abstract

Recent particle accelerator designs demand for advanced
prediction of parasitic effects like wake fields, even in
structures of comparatively weak influence like tapers. In
the case of smoothly tapered components even well estab-
lished codes like MAFIA [1] demonstrate strong discretiza-
tion dependency of the results or solver instabilities, mak-
ing alternative approaches necessary for such applications.
Grid dispersion is assumed to cause these problems. In
Ref. [2] an alternative discretization scheme is described,
using a homogeneous rotated mesh intended to eliminate
such grid dispersion effects. In order to study the depen-
dence on the discretization applied, we use this scheme to
calculate wake fields in prototype taper structures of rota-
tional symmetry. Furthermore a comparison is provided
with results of a non-rotated mesh, MAFIA runs and - so
far applicable - analytical approaches.

INTRODUCTION

In particle accelerators, tapered structures are used as a
smooth transition between different beampipe-radii to re-
duce wake-field effects. For high performance accelera-
tors even those weak effects are not negligible. Unfor-
tunately the simulation of scattered fields with computer
codes like MAFIA c© [1] yields strong discretization de-
pendency, which is shown in Figure 5. The directional
dependence of wave phase velocity referring to the grid
orientation, commonly denoted as grid dispersion, is as-
sumed to cause this failures. To overcome this drawback
we use an alternative discretization scheme introduced in
[2]. This scheme is based on the well known grid disper-
sion minimum for wave propagation along the grid diago-
nals in 3D-calculations [3]. The restriction on cylindrical
symmetric problems allows a treatment in 2D. Therefore
two discretization schemes, the ordinary (r, z) and the new
45◦rotated one are implemented using Mathematica R© [4].
To test the predicted lower dispersion error, we performed
a time integration of a resonant TM0 mode in an entirely
closed cylindrical resonator. The frequency deviation of the
simulated oscillation to the analytically calculated eigen-
frequency is a direct measure of the phase velocity devia-
tion. Finally wake-field calculations of tapered structures
with both schemes were performed. Therefore the recur-
sion algorithm was extended by an expression for the excit-
ing fields of the bunch. To observe longitudinal wake field
effects we restricted the calculation to an ultrarelativistic
bunch movement on the structures axis.

IMPLEMENTATION OF THE ROTATED
MESH

To perform a calculation on a rotated mesh we transform
the (r, z)-coordinate system into a new (u, v)-system ro-
tated by 45◦. In Figure 1, the allocation of the field com-
ponents is shown. The length of a mesh cell, given by the
step size h, is equidistant for u- and v-direction. For a good
boundary approximation we allow for half filled mesh cells
at the non-tapered surface.
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Figure 1: Field allocation and integration surfaces

Starting from the well known integral form of Maxwell’s
equations, we find the discretized form at a single mesh
point for the three field components, performing the inte-
gration on the quadratic surface I (Eq.(1)) and the two con-
ical surfaces II and III that lead to Eqs. (2) and (3), resp.:
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Permittivity ε and permeability μ are defined as either∞

at the boundaries or ε0, μ0 (i.e.vacuum) inside the compu-
tational domain. Time discretization is performed explic-
itly with the so called leap-frog algorithm [5]. Next these
recursions are applied for all grid points and written in ma-
trix form with the system-matrix A (for details refer to [6]).
Thus the whole recursion reduces to a matrix-vector multi-
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plication in the form of (4), where n describes the time step
index.
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Wake field excitation

For the calculation of wake fields, we need to introduce
the fields (index e) excited by the bunch [7].

ee
u(r) = ee

v(r) =
1√
2
−qi

4π ε0

1
r2

γ, (5)

he
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r2
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(6)

γ denotes the relativistic factor and qi the charge of the
bunch. The excitation only takes place at the material
boundaries, which leads to (comp. [6]):

h̃e
ϕ|n =
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μ

) (
he
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ẽe
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v|n−0.5
)

(9)

Electrical bunch fields being tangential to ideal conduct-
ing surfaces require the appearance of opposing scattered
(index s) fields in order to fulfil the Dirichlet boundary con-
ditions.
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Figure 2: E-field boundary treatment and approximation

Referring to Figure 2, no scattered field will be generated
in mesh cell � because of ee

u = ee
v . But in k the absence

of the electric field u-component (no boundary) causes an
excitation of a scattered field.
To implement this inhomogeneity in the existing recursion
formula we first merge the field components in a vector and
add it to (4).
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RESULTS

Validation

To compare the different discretization schemes, we use
a cylindrical resonator of the length 0.5m and a radius of
0.1m. As a starting point for the time integration, the
field components of the resonant fundamental mode are
calculated analytically. We observe the magnetic field
component at a fixed random grid point and compare the
time differences of zero crossings between our calculation,
MAFIA and the analytical result after roughly 10000ns
(115 oscillations).

Figure 3: Comparison of zero crossings (h-values having a√
2 factor indicate a rotated mesh.)

Figure 3 demonstrates that our result on a non-rotated
mesh is very close to the MAFIA result (Δt = 1ps, h =
2.5mm). Furthermore, the results of the rotated mesh are
much closer to the analytic one, even for a coarser dis-
cretization. The interrelation between time deviation and
discretization is shown in Table 1 for both schemes.

Table 1: Convergence behaviour for (r, z)-grid (left col-
umn) and (u,v)-grid (right column)

h/mm Δt(h)/Δt(h/2) h/mm Δt(h)/Δt(h/2)

10 3.985 10
√

2 2.166
5 4.002 5

√
2 4.554

2.5 4.024 2.5
√

2 11.09
1.25 4.113 1.25

√
2 3.083

0.625 0.625
√

2

Evaluating the expression [3, Eq.2.70a] for the numeri-
cal phase velocity in the Yee algorithm in the case of small
h and with θ being the wave propagation angle in the grid
leads to Δt ∝ h2(3 + cos(4θ)). This h2-dependency
is resembled very well by the (r,z)-grid as Table 1 illus-
trates, whereas the (u,v)-grid shows a more complicated
behaviour.

Wake field calculations

We compare three codes (MAFIA, the non-rotated
scheme and the scheme with the rotated mesh) regarding
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their convergence behavior in the simulation of tapered
structures. Therefore, we double stepwise the number of
mesh lines. Figures (5), (6), (7) show the longitudinal wake
potential for the three codes.
We assume a Gaussian bunch with a FWHM of σ = 1cm
and perform a time step Δt = h/(10 c0) where c0 rep-
resents the speed of light in vacuum. Using ideal elec-
tric conductors for all boundaries demands increasing of
the waveguide lengths in order to suppress reflection errors
from the upper and lower z-boundaries.
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Figure 4: 2D cross section of a tapered structure

Figure 4 shows a sketch of the simulated tapers. In the
following, we present for the longitudinal wake potential
computed by the three different codes. It is plotted on the
structure’s axis, with s as the distance behind the head of
the bunch.

Figure 5: MAFIA results for a = 100 mm, b = 500 mm,
c = 4 mm

Figure 6: Non-rotated mesh with a = 100 mm,
b = 100 mm, c = 50 mm

Figure 7: Rotated mesh with a = 100 mm, b = 100 mm,
c = 50 mm

Figure 8: Local snapshot of the scattered h-field in a ta-
pered structure, calculated with the rotated mesh

CONCLUSIONS

The numerical calculation of wake potentials in tapered
structures shows a strong dependence on discretization,
even for well established codes. By implementing both a
conventional 2D discretization and - following a proposal
from literature - a mesh rotated by 45◦ reduced phase ve-
locity deviation of the latter one was demonstrated using a
resonator oscillation as well defined test system. Neverthe-
less only the discretization dependence of the conventional
grid follows theoretical considerations. Wake potential cal-
culations yield significantly different results, those of the
rotated mesh being less depending on mesh size.
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