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Abstract

The wake potential is defined as an integration along an
axis of a structure. It includes the infinitely long beam
pipe regions and in case of numerical evaluation leads to
pipe wake artefacts. If the structure is cavity like one can
position the integration path on the pipe wall and only
the integration over the cavity gap remains. In case of
axis-symmetric protruding structures it was proposed by O.
Napoly et al. to deform the path such that the integration in
the pipe regions is again on the wall. The present paper
generalizes this method of path deformation to 3D struc-
tures with incoming and outgoing beam pipes. Its useful-
ness is verified with the code GdfidL and no artifacts were
observed.

INTRODUCTION

An important problem in modern accelerators is the de-
termination of the wakepotentials or impedances of metal-
lic structures in the vacuum chamber or being part of the
vacuum chamber. Normally, this has to be calculated with
numerical codes by integrating the longitudinal compo-
nent of the electric field along the direction of flight of the
charges. The integration domain includes infinitely long
beam pipe regions and leads to pipe wake artefacts. If,
however, the beam pipes are equal and no part of the struc-
ture protrudes into the pipe region one can integrate along
lines parallel to the structure axis and on the pipe contour.
Then, the integration on the infinitely long pipe surfaces
vanishes and only the integrations over a finite gap remain.
The values of the wake potentials on the pipe contour de-
fine a potential problem[3] whose solution gives the wake-
potential anywhere within the cross section. In all other
cases, when the beam pipes are different, or when part
of the structure protrudes into the pipes cross section, this
method cannot be employed. However, for axis-symmetric
structures it has been found[1], [4] that the path of integra-
tion can be deformed such that it is on the boundary of the
metallic structure and that the part in the pipes give no con-
tribution. Lateron[2] this approach has been generalised
for any arbitrary path of integration spanning the structure
longitudinally.

In this paper, we generalise the method once more al-
lowing in that way the artefact-free calculation of the wake
potentials for any 3D structure, the only restriction being
the existence of a common infinitely long tube area of ar-
bitrary cross-section.
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Figure 1: Upper part of the general 3D structure with dif-
ferent paths of integration.

DEFORMATION OF PATH OF
INTEGRATION

Referring to Fig. 1 the longitudinal wake potential is de-
fined by

Wz(x, y, s) = −1
q

∞∫

−∞

Ez(x, y, z, t = (z + s)/c)dz (1)

In a first step, we show that the integral along S5 equals
an integral over TM-components along−S8

∞∫

l2

Ez(x, y = a, z, t = (z + s)/c)dz = (2)

b2∫

a

(Ey − cBx)TM(x, y, z = l2, t = (l2 + s)/c)dy.

We introduce for any field component the definition

ū(x, y, z, s) = u(x, y, z, t = (z + s)/c), (3)

such that
∂ū

∂z
=

∂u

∂z
+

1
c

∂u

∂t
(4)

Combining MAXWELLs equations for TM- and TEM-
fields only (Hz=0) gives

∂

∂z

(
Ēx + cB̄y

)
=

∂

∂x
Ēz (5)

∂

∂z

(
Ēy − cB̄x

)
=

∂

∂y
Ēz (6)

∂

∂z
Ēz = − ∂

∂x
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Ēx − cB̄y

)
− ∂

∂y

(
Ēy + cB̄x

)
(7)

0 =
∂

∂x

(
Ēy + cB̄x

)
− ∂

∂y

(
Ēx − cB̄y

)
. (8)
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Using (5), (6), (8) and ∇ · �̄B = 0 one can define an irrota-
tional vector

�G = �ex

(
Ēx + cB̄y

)
+ �ey

(
Ēy − cB̄x

)
+ �ezĒz (9)

and apply STOKES’ theorem over an area A delimited by
S5, S6, S7, S8∫

A

(
∇× �G

)
· d �A = 0 =

∮
S

�G · d�s

=

∞∫

l2

Gz(y = a)dz +

b2∫

a

Gy(z = ∞)dy −

−
∞∫

l2

Gz(y = b2)dz −
b2∫

a

Gy(z = l2)dy

=

∞∫

l2

Ēzdz −
b2∫

a

(
Ēy − cB̄x

)
(z = l2)dy, (10)

which gives exactly the equ. (2). Here, we have assumed
small losses such that the integral over radiation fields at
z = ∞ vanishes and we accounted for Gz(y = b2) =
Ēz(y = b2) = 0. The important question of how the TM-
fields are extracted will be addressed in the next chapter. In
an analogous way we can show the equality of the integrals
over S1 and S2 and obtain for the wakepotential (1)

qWz(x, y, s) =
b1∫

a

(Ey − cBx) (z = −l1, t = (−l1 + s)/c)dy

−
l2∫

−l1

Ez(z, t = (z + s)/c)dz (11)

−
b2∫

a

(Ey − cBx) (z = l2, t = (l2 + s)/c)dy.

The integrals over y go over TM-field components repre-
senting the radiation field and TEM-field components be-
longing to the solenoidal bunch fields. The latter are re-
quired if the two beam pipes are different. In the form (11),
the infinitely long integrals over S1 and S5 are replaced by
the integrals over S2 and −S8 and no numerical artefacts
occur.

EXTRACTION OF TM- AND TEM-FIELDS

Since �G (9) is irrotational it follows that (∇ × G)z =
0 in the x,y-plane and Gx,y can be derived from a scalar
potential

Gxex + Gyey = ∇ϕ. (12)

Taking the divergence and making use of (7) leads to a
POISSON equation for ϕ

∇ · (Gxex + Gyey) =

=
∂

∂x
(Ēx + cB̄y) +

∂

∂y
(Ēy − cB̄x)

=
1
c

∂

∂t
Ez −

∂

∂z
Ez = ∇2ϕ. (13)

We note that the driving term of the equation has to be taken
at z = −l1, t = (−l1 + s)/c and z = l2, t = (l2 + s)/c
respectively. The TEM-fields are easily incorporated by
adding a line charge to the driving term. The extraction of
the TM-/TEM-fields requires therefore the solution

∂ϕ

∂y
= Gy =

(
Ēy − cB̄x

)
(14)

of two potential problems (13). Then, the wakepotential
(11) becomes

qWz(x, y, s) =
= [ϕ(x, y = b1)− ϕ(x, y)]z=−l1

−
l2∫

−l1

Ez(x, y, z, t = (z + s)/c)dz (15)

+ [ϕ(x, y)− ϕ(x, y = b2)]z=l2
.

where the potentials ϕ represent the integrals over y of the
TM- and TEM-fields.

EXAMPLES

The new procedure has been implemented in GdfidL[5].
For verification, we compare the impedances of a mode-
matching approach with the impedances as computed by
taking the FOURIERtransform of the wakepotentials, Fig.
2.

The next check examples are the wakepotentials, Fig. 4,
of a cross section step-in and step-out, Fig. 3. Their su-
perimposition is compared to the wakepotential of a long
cavity excited below resonance, Fig. 5.
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Figure 2: Real part of the longitudinal impedance of a
round iris in a round beam pipe. Dipole modes domi-
nate the result. Iris radius 1/3 and iris thickness 1/4 of the
beampipe radius. Above: Derived from the wakepotential.
Below: Mode-Matching result.
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Figure 3: Above: Cross-section of step-out. a=10cm,
b1=5cm, b2=10cm. Below: Rectangular cavity, g=60cm.
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Figure 4: Above: Wakepotential of step-in. Below: Wake-
potential of step-out. The dashed line is the exciting
linecharge, bunch length 12cm.
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Figure 5: Above: Wakepotential of the cavity in Fig.
3. Bunchlength 12cm. The dashed line is the exciting
linecharge. Below: Sum of the wakepotentials of the step-
out and the step-in.
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