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Abstract

It is known that modern accelerators fall under nonlinear
aberrations influence. The most of these aberrations have
harmful character, and their effect must be maximally de-
creased. There are a set of approaches and codes to solving
this problem. In this paper, we consider an approach for
solving this problem using the matrix formalism for Lie
algebraic tools. This formalism allows reducing the start-
ing problem to linear algebraic equations for aberration co-
efficients, which are elements of corresponding matrices.
There are discussed results evaluated using suggested ap-
proach and nonlinear programming tools. Some examples
of corresponding results are given.

INTRODUCTION

The problem of nonlinear aberrations correction is one
of the most important problems in beam physics. It is nec-
essary to note that all types of aberrations can be separated
into two ones. The first type consists of undesirable (or
harmful) aberrations, and the second type accumulates use-
ful aberrations, which characteristics can be used as control
parameters and/or functions. In the last case an investigator
exploits these aberrations (mainly nonlinear) for his special
goals, whereas the first type lead to deterioration of particle
beam quality. Here it is necessary to divide built-in control
field (for example, octupole components in the field of a
quadrupole lense and control field of special input multi-
pole lenses). It is know that the searching of appropriate
correcting fields (accordingly correcting elements — cor-
rectors) is a complex enough problem from the computa-
tional point of view. The choice of optimal configuration
of locations and forces of correctors should supply flexibil-
ity and effectiveness of the computational process. In this
paper we discuss an approach, which allows to find correct-
ing control fields and has the above mentioned properties.

Let numerate some important problems which we men-
tion in this paper: full or partly correction of chromatic
and geometric aberrations up to some order of nonlinearity,
aberrations induced by space charge forces, optimization of
fringe field influence for nonlinear dynamics. In the base
of the suggested method there lie matrix formalism for Lie
algebraic tools [1, 2].
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THE MATHEMATICAL BACKGROUNDS
FOR ABERRATIONS DESCRIPTION

Here we give necessary mathematical definition and con-
cepts of the matrix formalism for Lie algebraic tools.

Beam Propagator

The motion equation of beam particles can be written in
the following vector form:

dX
ds

= F(X,U; s), (1)

where X, U are phase vector and control functions (or pa-
rameters) vector correspondingly, s — the independent pa-
rameters measured along the reference orbit. In accordance
with Lie algebraic approach [3] the solution of eq. (1) can
be written in the following form:

X(U; s) = M(U; s|s0) ◦X0, X0 = X(s0). (2)

HereM(s|s0) is a Lie map, generated by eq. (1), or a beam
propagator.

Usually the perturbation character of control and self
consistent fields allows us to write eq. (1) in the form of
multivariate Taylor matrix series

dX
ds

=
∞∑

k=0

P
1k(s)X[k], (3)

where X[k] is a Kronecker power of k-th order. Solutions
of the initial problem for eq. (3) can be written in the fol-
lowing form

X(s) =
∞∑

k=0

R
1k(U; s|s0)X

[k]
0 , (4)

where R
11 is a matriciant for linearized motion equation

dX/ds = P
11X [4], and R

1k(s|s0) are aberration matri-
ces of k-th order (usual two-dimensional matrices), which
accumulate corresponding aberrations of k-th order. For
some behavioral assumption of matrices P

11 one can eval-
uate these matrices R

1k in a symbolic mode (using com-
puter algebra codes, for example, Maple, Mathematica and
so on). This practically automatic allows to evaluate aber-
ration matrices R

1k symbolically too. These matrices have
dimensions equal to n×

(
n+k−1

k

)
. Of course all necessary

evaluations numerically.
N o t e 1. The convergence of the series (4) can be proved

only for some interval for s. In general this series is di-
vergent. But for enough small interval [s0, s1] there is a
convenient estimation for rate of convergence.
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Grouped Aberration Matrix Elements
As stated above aberration matrices R

1k, k ≥ 2 accu-
mulate all coefficients, which combine nonlinear effects of
k-th order, generated by control elements. Their location in
R

1k can be determined by a researcher using permutation
matrices. For example, the well known spherical aberra-
tions are determined by coefficients by monomials of third
order: x′

3, x′
2
y′, x′y′

2, y′
3. But these monomials are dis-

tributed among other monomials of third order. From com-
putational point of view it is convenient to place correct
monomials in front of the rest ones. Similar redistribution
can be realized for chromatic aberrations of second order
and other types of aberrations. This technology is very
useful for computational process and will be used for our
goals.

Particular Propagators Concatenation

According to the Lie algebraic tools the whole beam
propagator, describing some investigated machine, can be
evaluated using one of known procedures (see, for exam-
ple, [5]). Using the matrix representation for beam prop-
agator we have to use the corresponding matrix analogue.
Let us write the necessary equalities up to N -th order of
nonlinear terms for some value of independent variable s m

R
1k(sm|s0) =

k∑

l=1

R
1l(sm|sm−1)Rlm(sm−1|s0),

R
ll =

(
R

11
)[l]

, ∀k = 1, N.

(5)

where [sm−1, sm] is a current interval and s0 — an initial
value of s. It is necessary to note that equalities (5) can be
evaluated for k ∈ [1, N ] in a symbolic form and then can
be used for practical simulation.

Symplectic Correction of the Beam Propagator

For practical computing we have to truncate the series
(4). This procedure leads to sacrifice of computational ac-
curacy. Here we mean, first of all, qualitative character
of errors. In the paper [9] it was demonstrated how one
should correct the matrices R

1k to retain the symplecticity
property of the matrix presentation of beam propagator up
to desired order of nonlinearity. In the next our manipula-
tions we suggest that the corresponding symplectification
procedure is supported.

ABERRATION CORRECTION
APPROACHES

The problem of the aberration correction concept can be
formulated in two forms. The first of them is based on non-
linear programming approach. According this approach for
each particular problem one should formulate an objective
function, which describes some quality criterion. In gen-

eral similar criteria can be written as

F [U] (sfin|s0) =

sfin∫

s0

∫

M(τ)

G (X(τ),U(τ), τ) dXdτ,

where G as an appropriate function describing an investi-
gated physical phenomenon, M(τ) is a current phase man-
ifold occupied beam particles. In particular, a researcher
can taking into account an information on envelopes along
the beam line axis and an information on some terminal
characteristics of the beam. The unremovable harmful ef-
fects lead to aberrations precipitation. The beam evolution
equations (1), (3) allows us to separate contributions of nec-
essary and unwanted effects:

dX
ds

=
∞∑

k=0

(
P

1k
ext(s) + P

1k
corr(s)

)
X[k],

where P
1k
ext and P

1k
corr are necessary matrices. The above de-

scribed matrix representation (see (4)) allows to write (see,
for example, [2]).

R
1k (sfin|s0) = R

1k
ext (sfin|s0) + R

1k
corr (Γ; sfin|s0) , (6)

where Γ is a vector of parameters γk, k = 1, Ncorr, de-
scribing corresponding characteristics of correcting multi-
poles.

Nonlinear Programming Approach

As we mentioned above the most general approach for
solving similar problems is based on nonlinear program-
ming methods (see. e. g. [6]). Unfortunately, in the case of
high number of variety parameters nonlinear programming
methods make difficult to investigate and leads to efficient
increasing of computational time. Therefore in this case
as a first step it would be more effective to use some vari-
ant of Monte–Carlo methods. And only on the second step
we can put into numerical simulation some deterministic
methods. In particular, for some beam physics problems
we used the well known flexible tolerance method [7]. This
approach has the adequate effectiveness. But these meth-
ods can be realized only numerically. Some approaches
for beam physics optimization problems were described in
[10].

An Algebraic Approach

Therefore it is necessary to suggest some another
method: more flexible and more effective. In the previ-
ous works authors (see, e.g. [8]) demonstrated the advan-
tages of matrix representation for some special cases. Let
us describe the main features of this approach. On the first
step one writes out the equalities similar to (4) using the
additive presentation for aberrations matrices (6). On the
second step the matrices Rcorr should be presented in the
following form

R
1k
corr =

Ncorr∑

j=1

γjR
1k
j−corr,
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where R
1k
j−corr are aberration matrices for correcting ele-

ments. Let us explain this procedure in the presence of
nonlinear effects of second and third order. For this one
should evaluate two matrices R

12
corr = R

12
corr(sfin|s0) and

R
13
corr = R

13
corr(sfin|s0).

R
12
corr =

sfin∫

s0

R
11(sfin|τ)P12(τ)R22(τ |s0)dτ.

R
13
corr =

sfin∫

s0

R
11(sfin|τ)P13(τ)R33(τ |s0)dτ+

sfin∫

s0

τ∫

s0

R
11(sfin|τ)P13(τ)R22(τ |τ ′)×

× P
23(τ ′)R33(τ ′|s0)dτ ′dτ.

For the next step we should use the following equalities [2]:

P
23 = P

12 ⊗ E + E⊗ P
12, R

kk =
(
R

11
)[k]

.

Let α, β are forces of second and third order nonlinearities
correspondingly. Then we can write

P
12 = αP̂

12, P
13 = βP̂

13, P
23 = αP̂

23.

Using these equalities one can write

R
12
corr =

N1
corr∑

i=1

αi

si∫

si−1

R
11(sfin|τ)P̂12(τ)R22(τ |s0)dτ =

=
N1

corr∑

i=1

αiR̃
12
i (sfin|s0).

R
13
corr =

N2
corr∑

i=1

βi

si∫

si−1

R
11(sfin|τ)P̂13(τ)R33(τ |s0)dτ+

+
N1

corr∑

i=1

N2
corr∑

k=1

αiβk

si∫

si−1

sk∫

sk−1

R
11(sfin|τ)P̂13(τ)R22(τ |τ ′)×

× P̂
23(τ ′)R33(τ ′|s0)dτ ′dτ =

=
N2

corr∑

i=1

βiR̃
13
i (sfin|s0) +

N1
corr∑

i=1

N2
corr∑

k=1

αiβkR̂
13
ik (sfin|s0).

Here N 1
corr and N 2

corr are numbers of correcting elements
and R̃

12
i , R̃

13
k , R̂

13
ik are partial matrices chargeable effects

of second and third orders under the assumption that cor-
responding forces of correcting elements are equal to unit
on partial intervals and to zero for all other intervals. These
matrices can be evaluated in advance as in symbolic or nu-
merical form.

The above described approach permits to formulate the
problem searching correcting elements forces in the follow-
ing way. On the first step we evaluate matrices R

12, R
13,

R
23 which describe the control elements with harmful aber-

rations and R̃
12
i , R̃

13
k , R̂

13
ik , which describe the correcting

elements using the above declared algorithm. As a result
we form special matrices and vectors, which generate the
following system of linear algebraic equations

AΓ = B, (7)

where the matrix A consists of the elements of matrices
R̃

12
i , R̃

13
k , R̂

13
ik .

For example, see an example of third order spherical
aberration correction in [2]. This approach allows us to
reduce the problem of correcting elements to the problem
of the linear algebra equation (7). The dimension of the
vector Γ = (γ1, . . . , γNcorr) depends on the type of harm-
ful aberrations and our possibilities to use corresponding
correcting elements.

CONCLUSION

As we mentioned previously these procedures can be
evaluated in symbolic or in numerical mode. In previous
papers similar matrices were evaluated for some special
cases of geometrical, chromatic aberrations up to third or-
der. More over the equations (7) are solved also symbol-
ically. All this information can be kept in a special data-
base and can be used for numerical simulation on-demand.
For long or circular systems as a previous step we suggest
to use nonlinear programming methods, as we pointed out
above. These numerical methods allows to find the starting
values of required parameters as initial ones for the next
steps, which are realized using the described method.
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