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Abstract 
Strong chromatic sextupoles compensating natural 
chromaticity of a storage ring may reduce dynamic 
aperture drastically. In the case of several sextupole 
families, one can find many ways to correct a 
chromaticity, which provides different sizes of the 
dynamic aperture. Finding a solution that gives the largest 
dynamic aperture is an important task for the storage ring 
design and operation. The paper discusses several 
approaches to sextupole arrangement optimization in 
order to obtain a large dynamic aperture. 

INTRODUCTION 
To compensate natural chromaticity of a storage ring, two 
possible approaches may be mentioned. The first one uses 
some theoretical framework to estimate power of the 
nonlinear perturbation: driving terms for structural 
resonances, rms variation of the linear invariant (smear), 
tune shift with amplitude, etc. Intuitively, one may expect 
that linearization of such merits provides increasing of the 
dynamic aperture. The problems are: (a) there is no 
general estimation for the nonlinear perturbation valid for 
all cases and betatron tunes; (b) there is no direct relation 
between perturbation strength and the size of dynamic 
aperture. In simple case a solution is trivial (for instance, 
in the vicinity of a strong resonance where reduction of 
the relevant driving term opens the aperture) but for 
arbitrary situation the general solution is not available. An 
advanced example of such approach is the NSLS-II 
dynamic aperture optimization [1] by a least-square 
solving of a 52×9 nonlinear system, which includes 27 
geometric modes to 3rd order, 12 tune shift coefficients to 
6th order and 13 chromatic terms to 6th orders.  

The second approach does not use any analytical 
expressions; instead of that it is based on general methods 
of numerical optimization. However, this method, if to 
enumerate all possible sextupole patterns to compensate 
chromaticity, requires a lot of processing time. In this 
paper we discuss an algorithm of the natural chromaticity 
compensation by “the best” pairs of sextupole magnets. 
The algorithm is simple and effective, does not require 
excessive running time, and can be applied for arbitrary 
lattice. Below we use this algorithm to optimize the 
dynamic aperture of the ALBA storage ring [2]. ALBA 
will be a third-generation synchrotron light source built in 
Spain near Barcelona. The storage ring, working at 3 GeV 
with a circumference of 268.8 m, has been designed for a 
maximum current of 400 mA. The lattice is based on an 
extended DBA structure and has a nominal emittance of 4 
nm-rad. The machine has four-fold symmetry with 4 long 

straight sections (8 m), 12 medium (4.2 m) and 8 short 
(2.6 m). There are 14 focusing and 16 defocusing 
sextupole magnets in the ALBA lattice cell to adjust the 
natural chromaticity, and they can be arranged in different 
pairs to obtain the better DA. 

ALGORITHM DESCRIPTION 
We propose to correct the chromaticity by N small steps 
along the vector ( )00 , yx ξξξ =

r

 as it is shown in Fig.1. At 

each step N-1-th fraction of the horizontal and vertical 
chromaticity is compensated by a single (in some sense 
the best for this particular step) pair of focusing and 
defocusing sextupoles ( )ji SDSF , . To find the best pair of 

sextupoles, we try all possible ( )SDSF,  - combinations 
and the pair demonstrating the largest dynamic aperture is 
fixed at this step. If NSF and NSD are the number of 
focusing and defocusing sextupoles, then NSF×NSD 
combinations have to be looked through at every step. 

 
Fig.1 Step-by-step chromaticity compensation. A and B 
indicate initial and final points respectively. 

At the next steps the procedure is repeated until the 
chromaticity will reach the desired value.  

As the dynamic aperture represents particle stable 
motion area with complicated and rather ambiguously 
determined boundary (see Fig.2), an important problem is 
comparison of different apertures, provided by sextupole 
pairs tested at the particular step. After some study we 
revealed that the most simple and reliable way is to found 
and compare the DA area of different seeds. By area we 
mean all points indicating a particle survived during 
tracking for a definite number of turns (1000 turns in our 
case). 

ALGORITHM APPLICATION  
As an algorithm application example we use the lattice 
ALBA v.25 [3] with parameters summarized in Table 1. 
The lattice ALBA v.25 already contains set of sextupoles 
optimized by another approach and considered below as 
the reference one. _________________________________________  
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There is a following sextupoles sequence for the half-
cell (SF1 SD1 SD2 SF2 SD3 SD4 SF3 SF3 SD4 SD5 SF4 
SF4 SD5 SD4 SF3). Assuming individual powering of 
each sextupole and keeping the symmetry of the lattice 
(4-fold for the whole ring and reflection for the cell), we 
can arrange the sextupoles in 56 pairs. 
 
Table 1_ ALBA v.25 parameters_______________ 
Energy    3 GeV 
Number of cells   4 
Natural emittance   4 nm-rad 
Circumference   268.8 m 
Horizontal betatron tune (per cell) 18.18 (4.54) 
Vertical betatron tune (per cell) 8.37 (2.09) 
Hor. natural chromaticity (per cell) -39.4 (-9.9) 
Vert. natural chromaticity (per cell) -28.8 (-7.2)___ 
 

An example of the 20 DA seeds at the first step is 
shown in Fig.2. One can see quite different size and shape 
of the DA, and basically several of them might be used 
for the second step, forming a kind of optimization tree. 

 
Fig.2 Twenty DA seeds at the first optimization step.  

An important question is the number of optimal steps 
for chromaticity correction to reach the largest DA. Fig.3 
shows the final area of the DA as a function of the steps 
number. The larger the number of steps is (the smaller 
chromaticity portion corrected at each step), the bigger 
final size of DA can be obtained. However, this process is 
asymptotic and for very large steps number (>100 in our 
case) the algorithm loses convergence and the final size of 
the DA starts reducing. 
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Fig. 3 Final DA size (area) as a function of the steps 
number required for chromaticity correction.  

Possible explanation of this fact is that for very small 
fraction of chromaticity corrected at every step, the DA 
change from step to step is also small and definition of the 

best solution became unreliable. The optimum steps 
number is ~50. 

Fig.4 demonstrates the change of the ALBA DA during 
the step-by-step chromaticity correction for 50-steps 
optimization.  

Step number
0 20 40

A
re

a,
 a

.u
.

0

2

4

6

8

10

310×

 
Fig.4 DA changing during step-by-step optimization. 

At the first steps the DA area changes drastically 
because each step provides large contribution to the total 
perturbation of a nonlinear system. However, as the 
perturbation increases, the relative contribution of each 
next optimization step to it reduces and the change of the 
DA seems to converge.  

The final DA in comparison with the reference one is 
given in Fig.5.  
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Fig.5 Final DA reached by the best sextupole pair (blue) 
compared to the reference one (black). 

A frequency of repetition of the best pairs turning 
during the chromaticity compensation and the DA 
optimization is depicted in Fig.6. 
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Fig.6 Repetition frequency of the best sextupole pairs 
occurrence during chromaticity compensation. 
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One can see that some pairs have never been chosen as 
the best ones while others occurred rather frequently 
(especially pair 37, which seems very effective for the 
DA optimization). 

DA AND PHASE TRAJECTORIES  
As usual, measurement of DA in a real storage ring is a 
difficult task requiring special equipment. It is easier to 
measure of phase space trajectories by means of turn-by-
turn BPM system. So it seems worth finding a correlation 
between the DA size and some measurable characteristics 
of phase space curves. 

Phase trajectories can be approximated analytically 
with the help of different perturbation approaches (see for 
instance [4]), which give the solution in the form of 
invariant of motion as a function of original phase space 
variables (for simplicity horizontal motion ( )xxJ φ,  only): 
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The above equation was used to fit the phase space 

trajectories, started with the same initial values, for three 
DA (the best, the worst and the intermediate one) at some 
particular step. Fig.7 shows these trajectories in ( )xpx,  

variables. 
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Fig.7 Three phase space trajectories for the best (red), the 
worst (blue) and intermediate (green) side of the DA.  

The fitting coefficients and the maximum value of the 
phase space distortion 

xxx JJJ −=Δ are summarized in 

Table 2. 
 

Table 2  Phase space distortion coefficients 

+DA Best Intermed. Worst 
A1,3 4.95 -0.62 0.05 
A1,1 2.55 -9.02 -28.3 
A2,4 870 941 2730 
A2,2 -410 2100 950 
A2,0 -2600 1470 7100 

xJΔ  (µm) 0.14 0.24 0.64 

 

The maximum value of the action variable distortion 
provides indication of the DA size: the larger 

xJΔ  

definitely corresponds to the smaller DA and vice versa. 
Fig.7 demonstrates ~1-mm difference at the level of 10 

mm in betatron oscillation amplitudes for the three cases 
considered. Such value can be easily observed by modern 
turn-by turn BPM diagnostics and used for DA 
optimization at operating machines. 

CONCLUSIONS AND PLANS 
The present work describes and illustrates the algorithm 
for the DA optimization by selecting of the best sextupole 
pairs as the natural chromaticity is corrected step-by-step. 
The results of the algorithm application seem promising 
and we plan to develop it further, in particular, to take 
into account energy DA optimization by including a 
second order chromaticity ( )δξ ∂∂ /,zx

 as the weight factor 

for the best sextupole pair definition. 
The authors wish to thank Prof. Dieter Einfeld from 

CELLS for the fruitful discussions. 
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