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Abstract 
The purpose of this paper is to evaluate any differences 

in the single particle tracking through a magnetic lattice 
when sextupoles are treated either like sliced or single-
kick elements. Only on-energy transverse motion is 
considered. Convergence and symplecticity of the method 
of sliced sextupoles are discussed. Dynamic apertures and 
transverse phase spaces applied to the Elettra synchrotron 
lattice are compared for the two cases. 

INTRODUCTION 
    The purpose of this paper is to investigate any 
differences in a single particle tracking performed 
through a nonlinear magnetic lattice when sextupoles are 
described like single-kick elements or multiple kicks 
(sliced sextupoles). Simply speaking, can a sextupole be 
replaced by many slices? And if yes, is the method 
converging and symplectic? A first brief theoretical 
address is followed by calculations applied to the motion 
for nonlinear fields; finally, plots of dynamic aperture and 
transverse phase space obtained with Mad code [1] are 
shown. Comments on the simplecticity and comparison of 
the two techniques conclude the paper. 

DISCRETIZATION 
    Euler method [2] allows approximating a physical 
continous dynamical system with one discrete. Solutions 
of the latter approximate solutions of the first in a 
rigorous way defined by the uniform convergence [3]. Let 
us consider a discrete dynamical system, linear in the 
coordinates and described by: 
 

   (1) 
 

                   
where A ∈Mn×n , I is the 

identity matrix, t ∈ℜ  is the variable, m ∈ N+  the 
number of step used for the discretization and X(t) the 
vector of coordinates through which we describe the 
system, with X(t=0) = X0. From (1) and by definition of 
the exponential function, it is possible to write in matrix 
formalism: 

 
 (2) 

 
    For each X0, given mij(t) the generic element of the 
matrix eAt and x0,j  the j-th component of  the X0 vector: 

 
 (3) 

 

xj (t)  is the (j-th component of) solution of (1) at a 
certain t. The l.h.s. of equation (3) illustrates the integral 
flux of a continous dynamical system for a given initial 
condition, while the r.h.s. is the representation of the 
solution of the analogous discrete system, linear in X0, 
and described by (1). The equivalence can be graphically 
thought like a linearization of the continous solution over 
a large number m of steps, so that it is approximated at 
each interval h=Δt/m with its differential. A solution of 
(1) for the k-th step is: 
    The error computed in the discretization is a function 

rapidly growing with the step of the approximation; 
consequently, the required power of calculus is great. It 
can be shown [3] that the error of local truncation Δl, 
relative to the single step approximation, satisfies: 

          Δl = ||)()exp(|| AhIAh +−  ≤  h2

2
eah       (4) 

    As for the error of cumulative truncation Δc – the total 
error computed in the approximation after k-steps – we 
refer to the general result of the theorem of convergence 
[3]. A generic field F(X) with X ∈ℜn is considered: 

 X
•

= F(X) ,  X(0) = X0  
 X(t1) ≅ X1 = X0 + hF( X0 )                         (5) 
 Xk+1 = Xk + hF(Xk ) 
If F(x) is Lipschitzian of constant L and limited in module 
by a constant M, 
    | F(x) − F(y) |≤ L | x − y |   and | F(x) |≤ M    (6) 
then Δc will depend on the step size h, M and L: 

     || )(k
cΔ  ≡  | Δc(t = kh) |   ≤  ]1[ −LteMh          (7) 

    This result is completely general, thus it can be applied 
to any nonlinear field satisfying (5) and (6). 

SEXTUPOLE  
    Two dimensional dynamics of a particle passing 
through a sextupole may be described, in analogy with 
(1), in the following form: 
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       (8) 
 
 
where α=eβms/2me and ms the sextupole strength. For a 
bore radius Rs, conditions in (6) are satisfied by 
L=αlsRs/βc and M=2RsL. Thus, the error of cumulative 
truncation in (7) extended over a large number of turns N 
becomes:  

  
(9) 

 
    As a practical case, let us consider a sextupole defined 
by ls = 0.1 m, ms = 30 m-2, Rs = 25 mm (β = 1). We obtain 
|Δc (104 turns)| ≤ 10-3 m, i.e. comparable with a realistic 
particle transverse excursion performing betatron 
oscillations. 

TRACKING  
    Single particle tracking has been performed using the 
Mad code applied to the bare lattice of the Elettra storage 
ring [4]. Main parameters used in the simulations are 
listed in Table 1.  
 
Table 1: Parameters of the single particle tracking in the 
Elettra lattice 

Energy   (GeV) 0.9 
εx = εy    (m rad) 3.5 × 10-8 
σx  (μm)  / σy  (μm) 
at observation point 

560  /  190 

chromaticities ξx / ξy 0.0 / 0.0 
Δp/p       (%) 0.0 

 
    The lattice includes two families of chromatic 
sextupoles, called SF and SD, and one family of harmonic 
sextupoles, called S1 (see, Table 2). In the case of sliced 
sextupoles, each one has been divided into ten pieces of 
identical strength. 
 

Table 2. Sextupoles in the Elettra lattice 
 # per cell /  

total number 
magnetic 
length (m) 

strength (m-2) 

SF 1  /  12 0.230 35.166 
SD 1  /  12 0.230 32.744 
S1 1  /  12 0.115 19.130 

 
    In Figure 1 is the transverse dynamic aperture (in 
σx,y units) resulting from tracking into single-kick (left) 
and sliced (right) sextupoles over 104 turns. It shows a 
stronger limitation in the horizontal plane with respect to 
the vertical. For the sliced lattice, the horizontal dynamic 
aperture is somewhat shifted so to be reduced in the right 

region but increased in the left one; it is also slightly 
larger in the vertical plane (right side). 
 

 
Figure 1: Dynamic aperture in sigma unit (σx = 560 
μm; σy = 190 μm) after 104 turns, for single-kick (left) 
and sliced (right).  
 
Figure 2 and Figure 3 represent the horizontal pseudo-
canonical phase space after 103 turns; initial conditions 
for tracking have been set at large amplitude in proximity 
of the dynamic aperture limits, where some differences 
appear between the two tracking technique and a stronger 
nonlinear motion is expected to be (see, Figure 1). As for 
Figure 2, the sliced lattice leads to a stronger distortion of 
the ellipse and finally to an unstable motion (notice the 
point at maximum divergence), while in the single-kick 
case the motion is still stable. The same result is also 
obtained after 104 turns (not shown here). In Figure 3 the 
single-kick case leads to unstable motion and particle 
loss, while in the sliced case, the vertical dynamic 
aperture being larger (see Fig.1), the phase space ellipse 
is only distorted and the particle motion remains bounded. 

SIMPLECTICITY 
Mad code uses the Lie-algebric tracking method up to the 
3rd order in the particle’s coordinates [5]. It is known that 
truncating the exponential series of the generating 
functions for the beam transport at a finite order does not 
produce a symplectic map. Therefore, Mad tracks the 
linear terms of the 4 dimensional beam phase space using 
the linear transfer matrix; as for the nonlinear terms, it 
applies a generating function defined such that the 
resulting canonical transformation agrees to the desired 
order with the mapping; the generating function is 
truncated at the given order of the Lie transformation. In 
this way, simplecticity is guaranteed for the single-kick 
approximation up to the 3rd order. Since each individual 
sextupole slice is described by a single-kick matrix, their 
product generates a transfer matrix still simplectic up to 
the 3rd order. Nevertheless, the resulting effect from the 
nonlinear field on the transverse phase space is different. 
If the error of truncation cumulated in the Euler method is 
not too large, the slice option is expected to be more 
realistic as it approximates to an integral. 
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Figure 2: Horizontal phase space after 103 turns with initial conditions xo = 60σx, yo = 0, zero divergences; single-kick 
(left) and sliced (right) sextupoles. 
 

 
 
Figure 3: Horizontal phase space after 103 turns with initial conditions xo = 50σx, yo = 20σy, zero divergences; single-
kick (left) and sliced (right) sextupoles. 

CONCLUSIONS 
    It has been verified that a sextupole field satisfies the 
theorem of convergence of Euler. The error of truncation 
cumulated when applying the Euler method has been 
analytically evaluated for a realistic example. If the error 
is made sufficiently small, the Euler method is expected 
to be more precise with respect to the simple single-kick 
element description because it approximates an integral. 
Single particle tracking has been performed with Mad and 
applied to the Elettra storage ring lattice. Dynamic 
aperture and phase space have been compared for the two 
cases of single-kick and sliced sextupoles. Differences in 
the motion stability become important just after 100 turns 
(passing through 36 sextupoles per turn) at large betatron 

amplitudes, where nonlinearities are stronger. In such 
cases, the Euler method predicts a different range for the 
stability of the particle motion. 
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