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Abstract

A summary of a new approach is given for analysing the
dynamic behaviour of distributions of charged particles in
an electromagnetic field. Noting the limitations inherent
in the Lorentz-Dirac equation for a single point particle, a
simple model is proposed for a charged continuum inter-
acting self-consistently with the Maxwell field in vacuo.
The model is developed using intrinsic tensor field the-
ory and exploits to the full the symmetry and light-cone
structure of Minkowski spacetime. A covariant perturba-
tion scheme is motivated by an exact class of solutions to
this system describing the evolution of a charged fluid un-
der the combined effects of both self and external electro-
magnetic fields. The scheme yields an asymptotic approx-
imation involving inhomogeneous linear equations for the
self-consistent Maxwell field, charge current and time-like
velocity field of the charged fluid

INTRODUCTION

The intense international activity involved in probing the
structure of matter on all scales, with particle beams and
radiation, owes much to recent advances in accelerator sci-
ence and technology. Developments in the production of
high power laser radiation also offer new avenues for accel-
erator design and new diagnostic tools of relevance to med-
ical science, engineering and the communications industry.
A common theme in these developments is the interaction
between charged particles and the electromagnetic field in
domains where relativistic effects cannot be ignored.

It is remarkable that many of the challenges that must
be addressed in order to develop and control devices that
accelerate charged particles have their origin in the interac-
tion of particles with their own electromagnetic field. De-
spite the fact that the classical laws of electromagnetism
were essentially formulated over a century and a half ago
the subject of electromagnetic interactions with matter re-
mains incomplete. This incompleteness has had concomi-
tant effects on the development of quantum electrodynam-
ics and renormalisation theory. At root, the difficulties re-
side in the recognition that the quantum structure of matter
at some scale is beyond observation. Furthermore, the clas-
sical description of the electron as a point particle leads to
singularities in the Maxwell self-fields that inevitably cre-
ate ambiguities in its interaction with the Maxwell field.
The general consensus is that a useful domain of validity of
the Lorentz-Dirac equation [1, 2, 3], describing covariantly
the radiation reaction on a point electron, can be accommo-
dated by performing a “reduction of order” that effectively
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replaces the equation by a perturbative second order system
for the particle world line. One must then decide whether
higher order terms in this expansion should be maintained
given the neglect of terms associated with the regularisation
scheme. This approach is behind many of the successful
applications of approximate radiation reaction dynamics,
despite the somewhat delicate and unsatisfactory nature of
the arguments that purport to support it. However, an un-
derstanding of the interaction of charged particle bunches
with their electromagnetic fields is vital for the success of
proposed future accelerators.

In this article a summary is given of a new approach for
analysing the behaviour of distributions of ultra-relativistic
charged particles in a coupled electromagnetic field en-
vironment [4]. Rather than mixing particle and field
concepts, our model is formulated entirely in the lan-
guage of smooth tensor fields. Here, the non-linear field
equations describing a thermodynamically inert (pressure-
less) charged fluid are adopted as a dynamical model of
charged particle bunches. They are analysed using an ultra-
relativistic asymptotic approximation scheme that con-
serves total energy, momentum and charge at all orders in
the expansion parameter.

EQUATIONS OF MOTION FOR A
PRESSURELESS CHARGED FLUID

The partial differential system of equations governing
the motion of a pressureless charged fluid in MKS form
is

∇ · e = 1
ε0

�, ∇× b = μ0�v + 1
c2

∂e
∂t ,

∇× e + ∂b
∂t = 0, ∇ · b = 0,

∂p
∂t + (v ·∇)p = q0 (e + v × b) ,

p = m0√
1−v·v/c2

v

(1)

where e is the electric field, b is the magnetic induction, v
is the fluid’s velocity field, � is the fluid’s charge density,
p is the fluid’s momentum field, m0 is the rest mass of the
particles comprising the fluid, q0 is the fundamental charge
of the particles comprising the fluid, ε0 is the permittivity
of the vacuum and μ0 is the permeability of the vacuum.
Although (1) is the most familiar statement of the fluid’s
equations of motion, their most succinct and analytically
powerful form is expressed without reference to a particular
inertial frame i.e. where the inertial time t does not appear
explicitly. Let M be Minkowski spacetime and let g be its
flat Lorentzian metric with ∇ the Levi-Civita connection.
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The system (1) may be recast in the coordinate-free form

dF = 0, d � F = −ρ � ˜V ,

∇V
˜V = iV F, g(V, V ) = −1

(2)

where V is the fluid’s 4-velocity field, F is an electromag-
netic field 2-form, ρ is proportional to the proper charge
density1 and is called the reduced proper charge density,
d is the exterior derivative, � is the Hodge map associated
with g, iV is the interior operator and the 1-form ˜V is the
metric dual of V . For more information on the precise re-
lationship between (2) and (1) see [4].

APPROXIMATION SCHEME

In general situations, exact solutions to the non-linear
partial differential system (2) are extremely difficult to find.
A self-consistent method for obtaining approximate solu-
tions is to let V , F and ρ depend on a running parameter ε
and to solve the hierarchy of equations generated by (2) for
the 1-parameter families of fields V ε, F ε and ρε order by
order in ε. Whether or not the hierarchy of equations so ob-
tained is easier to solve than the original system depends on
the ε dependences of the fields. Although there are many
possibilities, a viable choice is strongly suggested by the
behaviour of a class of highly symmetric exact solutions
relevant to accelerator physics. These solutions describe
“walls of charge” of infinite extent accelerating due to their
self-field (“space-charge”) and an applied constant electric
field. Let (t, x, y, z) be an inertial coordinate system where
t is the laboratory time and (x, y, z) are Cartesian coordi-
nates. The spacetime metric tensor g has the form2

g = −dt⊗ dt + dx⊗ dx + dy ⊗ dy + dz ⊗ dz. (3)

The “wall of charge” solutions have the following proper-
ties in the (dt, dx, dy, dz) frame : the magnetic field van-
ishes, the electric field has only a z component, the 4-
velocity field has only t and z components and all field
components depend only on t and z. The z component
of the reduced electric field has the form

E(t, z) = ζ
(

σ̂(t, z)
)

(4)

where σ = σ̂(t, z) is a solution to the implicit equation

σ = z − 1
ζ(σ)

(

√

1 + [ζ(σ)]2t2 − 1
)

(5)

and the lines of constant σ are the integral curves of V .
Splitting the initial (t = 0) electric field into a constant
external part ζ−1/ε and a self part ζ0(z):

Eε(0, z) =
1
ε
ζ−1 + ζ0(z) (6)

1The proper charge density is ε0m0c2

q0
ρ.

2Units are chosen in which the speed of light c = 1.

leads to

σ̂ε(t, z) = z − t + ε
ζ−1

− 1+2tζ0(z−t)
2tζ2

−1
ε2 + O(ε3),

Eε(t, z) = 1
εζ−1 + ζ0(z − t) + ζ′0(z−t)

ζ−1
ε + O(ε2),

(7)

for t > 0 and ζ−1 > 0 and where ζ ′0(σ) = dζ0
dσ (σ). Using

(7), it can be shown that the 4-velocity field V ε and reduced
proper charge density ρε take the form

V ε =
[

1
εζ−1 + ζ0(z − t)

]

t
(

∂t + ∂z

)

+
[

1+2t2ζ′0(z−t)
2tζ−1

∂t + ζ′0(z−t)t
ζ−1

∂z

]

ε + O(ε2),

ρε = ε
ζ′0(z−t)

ζ−1t + O(ε2).

(8)

Note that the coefficient of 1/ε in V ε is light-like; there-
fore, such field configurations are called ultra-relativistic.
More generally, it can be shown that the ε expansions of
F ε, V ε and ρε take the form

F ε =
∞
∑

n=−1
εnFn, V ε =

∞
∑

n=−1
εnVn,

ρε =
∞
∑

n=1
εnρn,

(9)

where F−1 is an external field (a solution to the source-free
Maxwell equations). Therefore, (9) is adopted as an ansätz
for the ε dependence of general solutions that include the
effects of guiding and accelerating electromagnetic fields.
Indeed, inserting (9) in (2) leads to a partially decoupled (in
comparison with (2)) infinite set of differential equations
whose myriad solutions include (7) and (8).

The infinite system is solved order by order in ε accord-
ing to the following iterated pattern:

solve Maxwell’s equations
↓

solve for the motion of the continuum
↓

enforce charge conservation

(10)

The first step in the solution procedure is to note that the ex-
ternal electromagnetic field F−1 is a solution to the source-
free Maxwell equations:

dF−1 = 0, d � F−1 = 0. (11)

The second step involves solving

∇V−1
˜V−1 = iV−1F−1, g(V−1, V−1) = 0 (12)

for the leading order 4-velocity field V−1. Note that, to
leading order, the motion of the charged continuum is gov-
erned by the external field F−1. The third step is to enforce
charge conservation to leading order by solving

d �
(

ρ1
˜V−1

)

= 0 (13)
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for ρ1 and ensures that the following step is consistent. The
fourth step is to solve the Maxwell equations for F0 with
the 4-current ρ1V−1 as a source:

dF0 = 0, d � F0 = − � ρ1
˜V−1 (14)

and the fifth step is to solve

∇V−1
˜V0 +∇V0

˜V−1 = iV−1F0 + iV0F−1,
g(V−1, V0) = 0

(15)

for V0. The sixth step is to enforce charge conservation to
next-to-leading order by solving

d �
(

ρ2
˜V−1

)

+ d �
(

ρ1
˜V0

)

= 0 (16)

for ρ2, leading to the seventh step which is to solve the
Maxwell equations

dF1 = 0, d � F1 = − � ρ2
˜V−1 − �ρ1

˜V0 (17)

for F1. This procedure is continued to any order in ε and
leads to expressions for F ε, V ε and ρε to any desired level
of accuracy.

The key point to note is that the only equation non-linear
in its unknown (the vector field V−1) is (12). However, (12)
is straightforward to analyse because it can be reduced to a
quasi-linear second order ordinary differential equation for
the integral curves of V−1. It can be shown that the equa-
tions for Vn with n ≥ 0, such as (15) for V0, written out
in a frame adapted to V−1 lead to to three inhomogeneous
linear differential equations determining three of the com-
ponents of Vn. The remaining component is the solution to
a linear algebraic equation involving fields of lower order
in ε.

EXAMPLE

A simple application of the approximation scheme is to
consider a high-energy charged beam propagating in free
space where the external field F−1 is zero. Following the
solution method introduced in the previous section, it may
be shown that the following 1-parameter fields are approx-
imate solutions to (2):

V ε =
(

1
εγ−1 + ε

4γ−1

)

∂t

+
(

1
εγ−1 − ε

4γ−1

)

∂z + O(ε2)
F ε = −(dΦ0 + εdΦ1) ∧ dt

+(dΦ0 + εdΦ1) ∧ dz + O(ε2)

(18)

where

γ−1 = γ̂(x, y),
ρ1 = ρ̂1(z − t, x, y), ρ2 = ρ̂2(z − t, x, y) (19)

are fixed by by their forms at an instant in t given as data.
The fields Φ0 and Φ1 are solutions to the transverse Poisson
equations

d⊥#⊥d⊥Φ0 = γ−1ρ1#⊥1,
d⊥#⊥d⊥Φ1 = γ−1ρ2#⊥1 (20)

where #⊥1 and d⊥ are the volume 2-form and exterior
derivative in the (x, y) planes. The 3-velocity of the beam
is along the z axis and has the subluminal Newtonian speed
1− ε2

2γ2
−1

+ O(ε3).
A Gaussian bunch with transverse radius R0 travelling

at constant Newtonian speed 1− ε2

2b20
+ O(ε2) is described

by
γ̂−1(x, y) = b0,

ρ̂1(z, x, y) = a0 exp
(

−x2+y2

R2
0

)

Ξ(z) (21)

where a0, R0 and b0 are constants and Ξ is a smooth
bump function vanishing outside the interval (−z1, z1) and
Ξ(z) = 1 for z ∈ (−z2, z2) and z1 > z2 > 0. The leading
order laboratory reduced charge density γ−1ρ1 for some
range of t is

γ−1ρ1 = γ̂−1(x, y)ρ̂1(z − t, x, y)
= a0 b0 exp

(

−x2+y2

R2

)

Ξ(z − t). (22)

Working in the cylindrical polar coordinates (t, R, φ, z)
where x = R cos φ and y = R sin φ, a cylindrically sym-
metric solution to (20) well-behaved at R = 0 is

Φ0 =

{

∫ R

0

a0 b0
R2

0

2s

[

1− exp
(

− s2

R2
0

)]

ds

}

Ξ(z − t)

(23)
and the corresponding electromagnetic 2-form F0 is

F0 = a0 b0
R2

0

2R

[

1− exp
(

−R2

R2
0

)]

Ξ(z−t) dR∧(−dt+dz).

(24)
The laboratory electric field is radial, the magnetic field is
azimuthal and their magnitudes are equal and vanish out-
side of the support of Ξ.
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