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Abstract 
Implementation of low energy injection schemes in the 
race-track microtron (RTM) design requires a better 
understanding of the longitudinal beam dynamics. 
Differently to the high energy case a low-energy beam 
will slip in phase relative to the accelerating structure 
phase. We generalize the concept of equilibrium or 
synchronous particle for the case of non-relativistic 
energies and introduce the notion of transition energy for 
RTMs. An analytic approach for the description of the 
synchronous phase slip is developed and explicit, though 
approximate, formulas which allow to define the 
equilibrium injection phase and fix the parameters of the 
accelerator are derived. The approximation can be 
improved in a systematic way by calculating higher order 
corrections. The precision of the analytic approach is 
checked by direct numerical computations using the 
RTMTrace code and was shown to be quite satisfactory. 
Explicit examples of injection schemes and fixing of 
RTM global parameters are presented.   

INTRODUCTION 
  Race-track microtron (RTM), combining properties of a 
linear accelerator and a circular machine, is a specific 
type of electron accelerator optimal for applications 
which require modest beam power and relatively high 
beam energy [1,2]. Nowadays there exist codes 
(RTMTRACE [3] and others) which permit to make 
design calculations with sufficient precision. At the same 
time, because of the large energy gain per turn and the 
phase slip both in the drift space between the end magnets 
and in their fringe field, the analysis  of the longitudinal 
dynamics in RTMs turns out to be quite complicated, and 
little analytic studies have been done so far. However, 
when designing a new accelerator with beam parameters 
quite different from those of known RTMs it is important 
to have a reliable  model of longitudinal motion in order 
to gain a good understanding of the machine behaviour 
and choose and optimize its parameters. Here we 
generalize the known analytic approach [1] by including 
the phase slip effect and introducing a concept of 
synchronous particle with a relativistic factor 1<β  and 
a notion of transition energy for RTMs. Some numerical 
examples demonstrating the validity of our analytic 
approach and its applicability for accelerator design are 
presented in the last section of the article.  

LONGITUDINAL DYNAMICS WITH 
PHASE SLIP 

 
Let us consider an electron RTM with the magnetic 

field induction in the end magnets B, separation between 
the magnets (straight section length) l, and the maximum 
energy gain in the linear accelerating structure (AS) 

maxEΔ . Fringe field effects are neglected and the AS is 
modelled by an infinitely thin accelerating gap.  As usual, 
the longitudinal dynamics of an individual particle is 
described by its energy E and phase ϕ  with respect to the 

accelerating voltage. Let ),( nn Eϕ  be the variables at the 

nth turn at the entrance of the AS. By 0ϕ  and 0E we 
denote the phase and energy at the beginning of 
acceleration. We would like to note that in most of pulsed 
RTM designs the electrons after the injection and first 
passage through the AS are reflected back by the end 
magnet fringe field and an additional dipole. In this case 

0E  is not the energy of injection but the energy before 
the second passage through the AS.    

 
Let us recall that an RTM is designed in such a way 

that the so called equilibrium or synchronous particle 
moving with the velocity cv =  satisfies the condition of 
resonance motion:   
                  ( ),)1( −+= nTT RFns νμ   (1) 
i.e. the time of the nth revolution Tns  of such particle must 
be a multiple of the period of the RF field TRF, where μ  
and ν  are positive integers defining the mode of 
operation of the machine [1]. We will call such particle 
ultra-relativistic, or asymptotic, synchronous particle. Its 
longitudinal dynamics is characterized by a synchronous 
phase sϕ , so that its energy gain per turn is equal to 

ss EE ϕcosmaxΔ=Δ . The energy snE ,  and phase 

sn,ϕ of the equilibrium particle at the nth turn change 
according to the following relations [1]:  
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    Let us consider the more common case when at the 
beginning of the acceleration the beam has 

1/ <= cvβ . The general expression for the time of the ____________________________________________ 
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nth revolution of a particle with energy nE  is given by 
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where )(Eβ  is the relativistic factor β  understood as a 
function of energy E. It is clear that Tn cannot satisfy 
resonance condition (1) with integer μ  and ν  for all n. 
Nevertheless, as we will show now, even in this case it is 
possible to introduce a concept of generalized 
synchronous particle.  

The recursion relations between ),( nn Eϕ  and 

),( 11 ++ nn Eϕ  are given by  
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(compare to (2)). The phase advance is described by the 
function 
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where λ  is the RF field wavelength. Of course, 

RFnn TTEK /2)( π=  with Tn given by Eq.  (3). As the 
energy grows, the longitudinal phase coordinates get 
closer to those of the asymptotic synchronous particle, 
therefore it is reasonable to introduce the new variables 

nsnn ϕϕψ −=  and  snsnn EEEw Δ−= /)(2πν . 
Let us define the dimensionless parameter 

snsn EE ,/Δ=ε  which decreases with the growth of n . 
Combining Eqs. (2), (4) one readily arrives at the 
following system of difference equations:  
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It is not possible to find exact solutions of this system, but 
we can get them approximately. Assuming that 

1|| <<nψ  and 1|| <<nw  we have shown that in the 
leading approximation, obtained by a consistent 
truncation of the expansions of Eqs. (5) in powers of the 
small parameter nε , these become the following 
inhomogeneous linear system of equations:  
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where we denoted sEmc Δ= /2κ  and m is the particle 
rest mass. The solution of system (6) for the longitudinal 
dynamics in the leading approximation is given by   
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where C and 0χ  are constants of integration determined 
by the initial conditions. The trigonometric terms are the 
known solution of the homogeneous part of the system 
describing the synchrotron oscillations [1], the rest of the 
terms correspond to the phase slip effect. By fine tuning 
the initial conditions one can get a trajectory without 
oscillations, in this case the particle phase nϕ only shifts 
from turn to turn approaching monotonously the 
asymptotic synchronous phase sn,ϕ . We will call such 
particle synchronous particle.  We would like to note that 
following a certain algorithm developed in [4] terms of 
higher orders in nε  in expansions (6) can be easily 

calculated.  The formulas of order up to 4
nε describing the 

change of the phase variables of the synchronous particle 
are the following:  
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In other words, the synchronous particle corresponding to 
the asymptotic synchronous phase sϕ  is defined as the 

particle with initial conditions ),( 00 Eϕ such that in the 
limit ∞→n  it approaches the asymptotic (ultra-
relativistic) synchronous  particle with the phase space 
coordinates ),( nss Eϕ , i.e. sn ϕπϕ →)2(mod ,  

nsn EE → . The phase shift of the synchronous particle 
follows well determined pattern described by Eq. (9).  
   The condition of stable oscillations around solution (6) 
is quite cumbersome, under certain simplifying 
assumptions it takes the form  

πνπν
ϕ 2

2
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which is a generalization of the known stability condition 
for ultra-relativistic particles [1]. As one can see the sign 
of the stable asymptotic synchronous phase depends on 
the sign of the derivative of the function K(E). In 
particular, there exists the transition energy  

( ) 3/22 /21 λνκlmcEtr +=  

for which 0/ =dEdK . Details of the stability analysis 
will be published elsewhere. We would like to note that in 
RTM designs usually the beam energy is above the 
transition energy already at the first orbits. 
 

COMPARISON WITH SIMULATIONS  
 

The accuracy of the analytic formulas obtained above 
were checked by comparing their predictions with results 
of numerical simulations. Here we present two examples 
of calculation of the synchronous trajectory for an RTM 
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with λ=5 cm, ν=1, ΔEmax=2.08 MeV, ϕs=16°. As it is clear 
from our discussion in the previous section to fix the such 
trajectory two parameters must be adjusted. As such 
parameters of tuning we will take 0ϕ  and the distance 

between the end magnets l . This is a common situation 
in RTM designs since the injection energy E0 is usually 
fixed by the electron gun and accelerating structure 
voltages. We consider the following examples.  
Example 1.  E0=12.536 MeV, 17=μ   

              In this case 14.01 =ε . The analytic formulas for 1=n  

with terms up to 4
1ε  predict 8622.4)/( =thl λ  and 

o5994,15,0 =thϕ .  A procedure of numerical minimiza-
tion of synchrotron oscillations described in [4] gives 
with high precision 862198.4)/( * =λl , 

o63061,15*0 =ϕ , so that the accuracy of the analytic 

approach is .03.0,0*0
o≈− thϕϕ  The level of accuracy 

can also be controlled from the amplitude of stable 
synchrotron oscillations shown in Fig. 1. Here trajectory 
I is obtained by integration of Eqs. (4) with the initial 
phase  *oϕ  and the distance between the end magnets 

equal to *l , trajectory II corresponds to ththo l,,ϕ . The 
asymptotic synchronous phase is represented by the 
horizontal dashed line. In this case the amplitude of 
oscillations does not exceed °= 04.0nδϕ .  

Example 2.  E0=2.536 MeV, 12=μ . This is the 
example of the RTM proposed in Ref. [5].  

   The values of l and ϕ0 obtained numerically are given by 
839856.4)/( * =λl , °= 4.94147*0ϕ . The analytic 

formulas of the previous section give 
834396.4)/( =thl λ  and °= 0.78873 -,0 thϕ , so that 

their accuracy is °− 6~*0 thϕϕ . The lower accuracy in 
this example is due to a higher value of the expansion 
parameter: 4.01 ≈ε . The plot of synchrotron oscillations 
is shown in Fig. 2. The notations are the same as in Fig.1.  

 
 

CONCLUDING REMARKS 
 

We have derived analytic formulas that describe the 
synchrotron oscillations with the phase shift in the RTM 
longitudinal dynamics. We have shown that they give a 
reasonably good accuracy and, being applied to the design 
of RTMs, allow to define the generalized synchronous 
trajectory, at least as a first approximation. The accuracy 
of the formulas depends on the value of the parameter nε  
at the orbit where the analytical method is applied. Their 
precision can be increased by including terms with higher 
powers in nε .  We would like to note that, in fact, the 

results are scale invariant, namely the distance between 
the end magnets l  and the RF wavelength λ enter only in 
the combination λ/l . Details of our analytical approach 
will be published elsewhere.  

 
Figure 1  
               Example 1.  

 
Figure 2: Phase  slip  and  synchrotron  oscillations  in 
                Example 2. 
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