A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Schwickert, M.

Paper Title Page
TUPCH015 Integrated Beam Diagnostics Systems for HICAT and CNAO 1028
 
  • A. Reiter, A. Peters, M. Schwickert
    GSI, Darmstadt
 
  An integrated system for beam diagnostics was produced at GSI for the heavy-ion cancer treatment facility HICAT of the Heidelberg university clinics. A set of 92 manifold beam diagnostic devices allows automated measurements of the main beam parameters such as beam current, profile or energy. The beam diagnostic subsystem is completely integrated in the overall accelerator control system and its timing scheme. This paper reports on the underlying design patterns for the abstraction of the beam diagnostic devices towards the control system. Event-counting devices, i.e. scintillating counters and ionization chambers, are presented as examples of the diagnostic devices in the synchrotron and high-energy beam transport section of HICAT. Additionally, it is shown that the well-defined building blocks of the beam instrumentation made it possible to prepare almost identical devices including the manual control software, to be used in the CNAO facility (Centro Nazionale di Adroterapia Oncologica) presently under construction in Pavia, Italy.  
TUPLS036 Status of the Linac-commissioning for the Heavy Ion Cancer Therapy Facility HIT 1571
 
  • M.T. Maier, R. Baer, W. Barth, L.A. Dahl, C. Dorn, T.G. Fleck, L. Groening, C.M. Kleffner, C. Müller, A. Peters, B. Schlitt, M. Schwickert, K. Tinschert, H. Vormann
    GSI, Darmstadt
  • R. Cee, B. Naas, S. Scheloske, T. Winkelmann
    HIT, Heidelberg
  • U. Ratzinger, A. Schempp
    IAP, Frankfurt-am-Main
 
  A clinical facility for cancer therapy using energetic proton and ion beams (C, He and O) is under construction and will be installed at the Radiologische Universitätsklinik in Heidelberg, Germany. It consists of two ECR ion sources, a 7 MeV/u linac injector and a 6.5 Tm synchrotron to accelerate the ions to final energies of 50-430 MeV/u. The linac comprises a 400 keV/u RFQ and a 7 MeV/u IH-DTL operating at 216.8 MHz. In this contribution the current status of the linear accelerator is reported. After first tests with 1H+ beam of the RFQ at GSI, the commissioning of the accelerator in Heidelberg has already started. The commissioning with beam is performed in three steps for the LEBT, the RFQ and the IH-DTL. For this purpose a versatile beam diagnostic test bench has been designed. It consists of a slit-grid emittance measurement device, transverse pick-ups providing for time of flight energy measurements, SEM-profile grids and different devices for beam current measurements. This paper will provide for a status report of the linac-commissioning.