A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Schempp, A.

Paper Title Page
TUPLS029 Optical Scheme of an Electrostatic Storage Ring 1553
 
  • V. Aleksandrov, Yu. Kazarinov, V. Shevtsov
    JINR, Dubna, Moscow Region
  • R. Doerner, H. Schmidt-Boecking, K.E. Stiebing
    IKF, Frankfurt-am-Main
  • A. Schempp
    IAP, Frankfurt-am-Main
 
  We consider the optical scheme of an electrostatic storage ring for low energy heavy ions/molecules* with special requirements to type of optical functions. Results of calculation are presented.

*C. P. Welsch et al. Proc. of PAC’03, 12-16 May 2003, Portland, Oregon, USA, p.1622.

 
TUPLS035 The HITRAP Decelerator Project at GSI 1568
 
  • L.A. Dahl, W. Barth, M. Kaiser, O.K. Kester, H.J. Kluge, W. Vinzenz
    GSI, Darmstadt
  • B. Hofmann, U. Ratzinger, A.C. Sauer, A. Schempp
    IAP, Frankfurt-am-Main
 
  The heavy ion trap (HITRAP) at GSI is a funded project since 2004. Highly charged ions up to U92+ provided by the GSI accelerator facility will be decelerated and subsequently injected into a Penning trap for further cooling almost to rest. A combination of an IH- and an RFQ-structure decelerates the ions from 4 MeV/u down to 6 keV/u. In front of the decelerator a double-drift-buncher-system provides for phase focusing and a final debuncher integrated in the RFQ-tank reduces the energy spread in order to improve the efficiency for beam capture in the cooler trap. The report gives an overview of the final beam dynamic design of the entire decelerator. Besides the construction status of the cavities, particular beam diagnostic features due to the short pulses of 1 μs and 108 MHz bunch frequency, and the measures for technical and controls integration into the existing GSI accelerator complex are presented. Finally the recent time schedule and considerations for commissioning are shown.  
TUPLS037 The Frankfurt Funneling Experiment 1574
 
  • U. Bartz, D. Ficek, N. Mueller, A. Schempp, J. Thibus, M. Vossberg
    IAP, Frankfurt-am-Main
 
  The goal of the Frankfurt Funneling Experiment is to multiply beam currents of RFQ accelerators at low energies to avoid problems with space charge. The two beams from the ion sources are injected into two RFQ channels. The last part of the RFQ electrodes have been replaced to achieve a 3d focus at the crossing point of the two beam axis where the funneling deflector as a central peace of the experiment is located. The newly designed multi-cell deflector is adapted to the optimised funneling section. It is mechanically solid, easy to tune in and ready for operation. First measurements will be presented.  
TUPLS038 The MAFF IH-RFQ Test Stand at the IAP Frankfurt 1577
 
  • A. Bechtold, D. Habs
    LMU, München
  • J. Fischbach, U. Ratzinger, J. Rehberg, M. Reichwein, A. Schempp
    IAP, Frankfurt-am-Main
  • J. Haeuser
    NTG Neue Technologien GmbH & Co KG, Gelnhausen
  • O.K. Kester
    GSI, Darmstadt
 
  The IH-type RFQ for the MAFF project at the LMU in Munich is presently under construction and will be integrated into a beam test stand at the IAP in Frankfurt. It is the second RFQ following the IH resonator concept and the first one that can be directly compared to a very similar 4-rod type machine, namely the REX-ISOLDE RFQ at CERN. The MAFF RFQ has been designed to accelerate rare isotope beams (RIBs) with mass to charge ratios up to 6.3 from 3 keV/u to 300 keV/u at an operating frequency of 101.28 MHz with an electrode voltage of 60 kV. First RF-measurements have already been executed and can be compared to appropriate simulation results. Parts of the test stand are currently under construction, such as the volume ion source for He+ at an extraction voltage of 12 keV and an electrostatic quadruplet for injection with an integrated steering system. These tests and accompanying theoretical investigations will be done with special respect to the applicability of such normal conducting RFQ accelerators to the EURISOL post accelerator.  
TUPLS040 Tuning of a 4-rod CW-mode RFQ Accelerator 1583
 
  • P. Fischer, A. Schempp
    IAP, Frankfurt-am-Main
 
  A four-rod RFQ accelerator has been built which operates in CW mode with a power consumption of 250 kW. The assembly of a high power RFQ structure requires a precise mechanical alignment and field tuning of the electrode field. The field distribution must be very flat to enable a proper operation with few losses. Adjusting of the field distribution is critical in long structures. Simulations and the status of the tuned structure will be discussed.  
TUPLS041 The HITRAP RFQ Decelerator at GSI 1586
 
  • B. Hofmann, A. Schempp
    IAP, Frankfurt-am-Main
  • O.K. Kester
    GSI, Darmstadt
 
  The HITRAP linac at GSI will decelerate ions from 5 MeV/u to 6 keV/u for experiments with the large GSI Penning trap. The ions, provided by the GSI accelerator facility, will be decelerated at first in the existing experimental storage ring (ESR) down to an energy of 5 MeV/u, and injected into a new IH decelerator and decelerated to 5oo keV/u. The following 4- Rod type RFQ will decelerate the ion beam from 5oo keV to 6 keV/u. The RFQ has been designed and will be built at the Institute for Applied Physics in Frankfurt. The properties of the RFQ decelerator and the status of the project will be discussed.  
TUPLS043 Simulations for the Frankfurt Funneling Experiment 1591
 
  • J. Thibus, A. Schempp
    IAP, Frankfurt-am-Main
 
  Beam simulations for the Frankfurt Funneling Experiment are done with RFQSim and FUSIONS. RFQSim is responsible for the beam transport through an RFQ accelerator. Behind the accelerator the particle dynamic program FUSIONS calculates the macro bunches of both beam lines through an r.f. funneling deflector. A new space charge routine has now been included. The status of the development of FUSIONS and the results of the simulations will be presented.  
TUPLS082 The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum (FRANZ) 1690
 
  • L.P. Chau, O. Meusel, U. Ratzinger, A. Schempp, K. Volk
    IAP, Frankfurt-am-Main
  • M. Heil
    FZ Karlsruhe, Karlsruhe
 
  About 40ns long proton pulses with an energy of 120keV and currents of up to 200mA will be produced at the 150kV high current injector with a rep.rate of up to 250kHz. The main acceleration will be done by a 175MHz-RFQ. After this section the proton bunches will have an energy of about 1.7MeV. A 4-gap cavity will allow for an energy increase up to 2.2MeV.In order to get 1ns short pulses at the Li-7-Target we propose a buncher-system of the Mobley-Type*, whereby periodic deflection at one focus of a dipole-magnet guides the bunche train from the linac on different paths to the other focus, where the n-production traget is located in the time focus.By 7Li(p,n)B·107 reactions low-energy neutron bunches will be produced with an averaged integrated flux-density of 4*107/(cm2 s) at a distance of 0.4m. The upper limit for the neutron spectra will be 500keV. The main challange with respect to this buncher is the strong space charge action, which has to be treated by careful particle simulations. FRANZ is among other duties well suited for (n,gamma)-cross-sectional measurements with astrophysical relevance**/***. It is characterised by high n-intensities and by its pulse-structure.

*Phys. Rev. 88(2), 360-361 (1951). **Phys. Rev. C 71, 025803 (2005).***Phys. Rev. Lett. 94, 092504 (2005).

 
TUPLS095 Recent Progress about DPIS 0
 
  • M. Okamura, R.A. Jameson
    RIKEN, Saitama
  • T. Kanesue
    Kyushu University, Hakozaki
  • H. Kashiwagi
    JAEA/ARTC, Gunma-ken
  • A. Kondrashev
    ITEP, Moscow
  • K. Sakakibara
    RLNR, Tokyo
  • A. Schempp
    IAP, Frankfurt-am-Main
  • J. Tamura
    TIT, Yokohama
 
  We have focused on high brightness of induced plasma in Laser Ion Source (LIS) to provide intense highly charged ions efficiently. To take the advantage of the intrinsic density of the laser plasma, Direct Plasma Injection Scheme (DPIS) has been developed. The induced laser plasma has initial expanding velocity and can be delivered directly to the RFQ. Extraction electrodes and focusing devices in LEBT are not needed. Since 2004, a newly designed RFQ has been used to verify the capability of the new ion production scheme. We succeeded to accelerate 60 m A of Carbon beam and 60 mA of Aluminium beam. We have also tried to understand plasma properties of various species by measuring charge states distributions and time structures, and are now ready to accelerate heavier species. Currently Silver 15+ beam is planned to be accelerated. In the conference, design strategies and detailed techniques for the DPIS will be described based on the measured plasma properties of various elements and new findings obtained from recent acceleration experiments. The durability and the reproducibility will be also explained.  
WEPCH017 Front-to-end Simulation of the Injector Linac for the Heidelberg Ion Beam Therapy Centre 1957
 
  • R. Cee
    HIT, Heidelberg
  • C.M. Kleffner, M.T. Maier, B. Schlitt
    GSI, Darmstadt
  • U. Ratzinger, A. Schempp
    IAP, Frankfurt-am-Main
 
  The injector linac of the Heidelberg ion beam therapy centre is currently in the commissioning phase. Its main components are two electron cyclotron resonance ion sources (ECRIS), a radio-frequency quadrupole accelerator (RFQ) and an interdigital H-type drift tube linac (IH-DTL). It will be able to accelerate beams of hydrogen-, helium-, carbon- and oxygen-ions up to a specific energy of 7 MeV per nucleon. This contribution focuses on the beam dynamics simulation of the transport lines and the accelerating structures. Three dedicated tools have been employed: Mirko for the beam transport, RFQmed for the particle dynamics through the RFQ and LORASR for the acceleration in the IH-DTL. Between the different beam dynamics codes interfaces have been implemented and a front-to-end simulation has been performed. Comparisons with alternative programmes confirm the results obtained. The work will enable us to investigate the behaviour of the machine in a theoretical model during the forthcoming operating.  
WEPCH117 Beam Dynamics of an Integrated RFQ-drifttube-combination 2191
 
  • A. Bechtold, M. Otto, A. Schempp
    IAP, Frankfurt-am-Main
 
  In the frame of a collaboration with the GSI in Darmstadt an RFQ-Drifttube-Combination for the Heidelberg cancer therapy center HICAT has been designed, built and successfully beam tested at the IAP Frankfurt. The integration and combination of both an RFQ and a rebunching drifttube unit inside a common cavity forming one single resonant RF-structure has been realized for the first time with this machine. The results of the beam measurements and questions about the beam dynamics simulations of such a combination have been investigated in detail with the code RFQSIM.  
THPCH007 Development of a High Current Proton Linac for FRANZ 2799
 
  • C. Zhang, A. Schempp
    IAP, Frankfurt-am-Main
 
  The FRANZ Facility, a planned worldwide unique pulsed neutron source, will be built at Frankfurt University. A single RFQ or an RFQ-IH combination working at 175MHz will be used to accelerate a 200mA proton beam to the energy which can meet the demands of required neutron production. The beam dynamics study has been performed to design a flexible, short-structure and low-beam-loss RFQ accelerator. The design results and relative analyses are presented.  
TUPLS036 Status of the Linac-commissioning for the Heavy Ion Cancer Therapy Facility HIT 1571
 
  • M.T. Maier, R. Baer, W. Barth, L.A. Dahl, C. Dorn, T.G. Fleck, L. Groening, C.M. Kleffner, C. Müller, A. Peters, B. Schlitt, M. Schwickert, K. Tinschert, H. Vormann
    GSI, Darmstadt
  • R. Cee, B. Naas, S. Scheloske, T. Winkelmann
    HIT, Heidelberg
  • U. Ratzinger, A. Schempp
    IAP, Frankfurt-am-Main
 
  A clinical facility for cancer therapy using energetic proton and ion beams (C, He and O) is under construction and will be installed at the Radiologische Universitätsklinik in Heidelberg, Germany. It consists of two ECR ion sources, a 7 MeV/u linac injector and a 6.5 Tm synchrotron to accelerate the ions to final energies of 50-430 MeV/u. The linac comprises a 400 keV/u RFQ and a 7 MeV/u IH-DTL operating at 216.8 MHz. In this contribution the current status of the linear accelerator is reported. After first tests with 1H+ beam of the RFQ at GSI, the commissioning of the accelerator in Heidelberg has already started. The commissioning with beam is performed in three steps for the LEBT, the RFQ and the IH-DTL. For this purpose a versatile beam diagnostic test bench has been designed. It consists of a slit-grid emittance measurement device, transverse pick-ups providing for time of flight energy measurements, SEM-profile grids and different devices for beam current measurements. This paper will provide for a status report of the linac-commissioning.