A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Loulergue, A.

 
Paper Title Page
MOPCH005 The ARC-EN-CIEL FEL Proposal 53
 
  • M.-E. Couprie, C. Bruni, O.V. Chubar, A. Loulergue, L. Nahon
    SOLEIL, Gif-sur-Yvette
  • B. Carré, D. Garzella, M. Jablonka, M. Labat, G. Lambert, F. Meot, P. Monot, A. Mosnier
    CEA, Gif-sur-Yvette
  • J.-R. Marquès
    LULI, Palaiseaux
  • D. Nutarelli
    LAC, Orsay
  • J.-M. Ortega
    CLIO/ELYSE/LCP, Orsay
 
  ARC-EN-CIEL (Accelerator-Radiation Complex for Enhanced Coherent Intense Extended Light), the French project of a fourth generation light source aims at providing the user community with coherent femtosecond light pulses covering from UV to soft X ray. It is based on a CW 1 GeV superconducting linear accelerator delivering high charge, subpicosecond, low emittance electron bunches with a high repetition rate (1 kHz). Electron beam calculations will be presented. The FEL is based on the injection of High Harmonics Generated in Gases (HHG) in a High Gain Harmonic Generation scheme, leading to a rather compact solution. The produced radiation extending down to 0.8 nm with the Non Linear Harmonics reproduces the good longitudinal and transverse coherence of the harmonics in gas. Calculations are preformed with PERSEO, taking into account the proper transverse overlap between HHG and the electron beam, and with SRW. Optional beam loops are foreseen to increase the beam current or the energy. They will accommodate fs synchrotron infrared Coherent Synchrotron Radiation sources, VUV and X ray ranges and a FEL oscillator in the 10 nm range. An important synergy is expected between accelerat  
WEPLS118 The 3Hz Power Supplies of the SOLEIL Booster 2652
 
  • P. Gros, S. Bobault, A. Loulergue
    SOLEIL, Gif-sur-Yvette
 
  SOLEIL is a 2.75 GeV new third generation synchrotron radiation facility under construction near Paris. The injector system is composed of a 100 MeV electron Linac pre-accelerator followed by a full energy (2.75 GeV) booster synchrotron. A repetition rate of 3Hz is required for the booster for the filling of the Storage Ring together with the need for discontinuous operation for top-up filling mode. Based on digital regulation loop, the four power supplies (2 for the dipoles 600 A x 1000 V and 2 for the quadrupoles 250 A x 450 V) reach the current tracking tolerance specification of 10-3. The aim of this paper is to describe the main issues from the loads to the mains network through the power converters that are essential to reach the required performances.  
THXPA02 Overview of the Status of the SOLEIL Project 2723
 
  • J.-M. Filhol, J.C. Besson, P. Brunelle, M.-E. Couprie, J.-C. Denard, J.M. Godefroy, C. Herbeaux, V. Le Roux, P. Lebasque, A. Lestrade, M.-P. Level, A. Loulergue, P. Marchand, J.L. Marlats, A. Nadji, L.S. Nadolski, R. Nagaoka, B. Pottin, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette
 
  SOLEIL is a third generation synchrotron radiation source, under construction in France near Paris. The storage ring consists of a 357 m circumference ring, with 16 cells and 24 straight sections, out of which up to 21 will house insertion devices (ID). The optics features a low 3.7 nm.rad emittance at the 2.75 GeV operating energy, so as to provide high brilliance, from the VUV up to the hard x-ray domain. To reach a long lifetime, and beam position stabilities in the micron range, significant attention was paid at each design stage (optics, magnets, beam position monitors, vacuum and RF systems…), including on the design of the building, the construction of which is now complete. This resulted in some unprecedented approaches such as the intensive use of NEG coating vessels, or the development of a dedicated SC RF cavity and of 200 kW solid state RF amplifiers. The injector system (100 MeV Linac) and the 3 Hz full energy booster synchrotron have reached nominal operating conditions by fall 2005, while the ring commissioning should start by April 2006. Innovative ID's were designed and built so as to provide the best possible performances in a wide energy range (5 eV to 50 keV).  
slides icon Transparencies
THPLS008 Commissioning of the SOLEIL Booster 3281
 
  • A. Loulergue
    SOLEIL, Gif-sur-Yvette
 
  SOLEIL is a 2.75 GeV new third generation synchrotron radiation facility under construction near Paris. The injector system is composed of a 100 MeV electron Linac pre-accelerator followed by a full energy (2.75 GeV) booster synchrotron. The booster lattice is based on a FODO structure with missing magnet. With a circumference of 157 m and low field magnets (0.74 T), the emittance is in the range of 110 to 150 nm.rad at 2.75 GeV. The magnets are excited at 3 Hz, using switched mode power supplies, with digital regulation. The LEP type RF cavity is powered by a 35 kW-352 MHz solid state amplifier. Closed orbits are measured turn by turn, using the BPM Libera digital electronics. The commissioning took place in October 2005, and an acceleration efficiency of 75% was obtained at the maximum energy. The main results achieved during that commissioning will be reported.  
THPLS009 First Results of the Commissioning of SOLEIL Storage Rings 3284
 
  • A. Nadji, J.C. Besson, P. Betinelli, P. Brunelle, A. Buteau, L. Cassinari, M.-E. Couprie, J.-C. Denard, J.-M. Filhol, P. Gros, C. Herbeaux, J.-F. Lamarre, P. Lebasque, M.-P. Level, A. Loulergue, A. Madur, P. Marchand, L.S. Nadolski, R. Nagaoka, B. Pottin, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette
 
  The commissioning of SOLEIL's storage ring will start in April 2006. The objective is to reach, within a first phase of two months, stable beam conditions at 100 mA in the multi-bunch mode that can be used for the commissioning of the beamlines. This is a challenging objective, especially because the SOLEIL's ring is incorporating some innovative techniques such as the use of a superconducting RF cavity, NEG coating for all straight parts of the machine and new BPM electronics. Prior to the start of the commissioning, some insertion devices and most of the insertion devices low gap vacuum vessels, including 10 mm inner vertical aperture vessels for the Apple-II type, will be installed on the ring. This paper will review the performances of all these equipment in presence of the beam. The results of the first commissioning runs will be presented.