A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kershaw, K.

 
Paper Title Page
TUODFI01 The Final Collimation System for the LHC 986
 
  • R.W. Assmann, O. Aberle, G. Bellodi, A. Bertarelli, C.B. Bracco, H.-H. Braun, M. Brugger, S. Calatroni, R. Chamizo, A. Dallocchio, B. Dehning, A. Ferrari, P. Gander, A. Grudiev, E.B. Holzer, J.-B. Jeanneret, J.M. Jimenez, M. Jonker, Y. Kadi, K. Kershaw, J. Lendaro, J. Lettry, R. Losito, M. Magistris, A.M. Masi, M. Mayer, E. Métral, R. Perret, C. Rathjen, S. Redaelli, G. Robert-Demolaize, S. Roesler, F. Ruggiero, M. Santana-Leitner, P. Sievers, M. Sobczak, E. Tsoulou, V. Vlachoudis, Th. Weiler
    CERN, Geneva
  • I. Baishev, I.L. Kurochkin
    IHEP Protvino, Protvino, Moscow Region
 
  The LHC collimation system has been re-designed over the last three years in order to address the unprecedented challenges that are faced with the 360 MJ beams at 7 TeV. The layout of the LHC has now been fixed and a final approach for collimation and cleaning has been adopted. In total 132 collimator locations have been reserved in the two LHC rings and can be installed in a phased approach. Ninety collimators of five different types will be available for initial beam operation. The system has been fully optimized for avoiding quenches of super-conducting magnets during beam losses and for sufficient survival of beamline components against radioactive dose. The phased approach for LHC collimation is described, the various collimators and their functionalities are explained, and the expected system performance is summarized.  
slides icon Transparencies
THPCH180 Equipment for Tunnel Installation of Main and Insertion LHC Cryo-magnets 3218
 
  • K. Artoos, S. Bartolome-Jimenez, O. Capatina, T. Feniet, J.L. Grenard, M. Guinchard, K. Kershaw
    CERN, Geneva
 
  The installation of about 1700 superconducting dipoles and quadrupoles in the Large Hadron Collider (LHC) is now well underway. The transport and installation of the LHC cryo-magnets in the LEP tunnels originally designed for smaller, lighter LEP magnets have required development of completely new handling solutions. The severe space constraints combined with the long, heavy loads have meant that solutions had to be very sophisticated. The paper describes the procedure of the installation of the main cryo-magnets in the arc as well as the more specific insertion cryo-magnets. The logistics for the handling and transport are monitored with tri-axial acceleration monitoring devices that are installed on each cryo-magnet to ensure their mechanical and geometric integrity. These dynamic results are commented. The paper includes conclusions and some lessons learned.  
THPCH181 Overview of the Large Hadron Collider Cryo-magnets Logistics 3221
 
  • O. Capatina, K. Artoos, R. Bihery, P. Brunero, J.M. Chevalley, L.P. Dauvergne, T. Feniet, K. Foraz, J. Francey, J.L. Grenard, M. Guinchard, C. Hauviller, K. Kershaw, S. Pelletier, S. Prodon, I. Ruehl, J. Uwumarogie, R. V. Valbuena, G. Vellut, S. Weisz
    CERN, Geneva
 
  More than 1700 superconducting cryo-magnets have to be installed in the Large Hadron Collider tunnel. The long, heavy and fragile LHC cryo-magnets are difficult to handle and transport in particular in the LEP tunnel environment originally designed for smaller, lighter LEP magnets. An installation rate of more than 20 cryo-magnets per week is needed to cope with the foreseen LHC installation end date. The paper gives an overview of the transport and installation sequence complexity, from the storage area at the surface to the cryo-magnet final position in the tunnel. The success of this task depends on a series of independent factors that have to be considered at the same time. The equipment needed for the transport and tunnel installation of the LHC cryo-magnets is briefly described. The manpower and equipment organisation as well as the challenges of logistics are then detailed. The paper includes conclusions and some of the lessons learned during the first phase of the LHC cryo-magnets installation.