A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Keil, B.

Paper Title Page
TUPCH092 Commissioning of a New Digital BPM System for the PSI Proton Accelerators 1226
 
  • B. Keil, P.-A. Duperrex, M. U. Müller
    PSI, Villigen
 
  A new digital beam position monitor (DBPM) system has been developed and successfully tested at the PSI proton accelerators. The DBPM hardware consists of an analogue RF front-end (RFFE), a VMEbus backplane module (VBM), and the PSI VME PMC Carrier board (VPC). The RFFE combines the 2nd RF harmonic (101.26 MHz) beam signals of pickup coils with a 101.31 MHz pilot signal. The RFFE output signals are undersampled and down-converted to base-band (no analogue mixer) by ADCs and DDCs (Direct Digital Downconverters) on the VBM. The DDCs send the digitised beam and pilot signal amplitudes to a Virtex2Pro FPGA on the VPC board. The FPGA calculates the beam positions at different averaging rates, checks interlock limits, and provides triggered storage of beam position waveforms. Furthermore, the FPGA performs automatic gain control of voltage-controlled amplifiers (VCAs) of RFFE and VBM. By continuous normalisation of beam to pilot signal, nonlinearities and temperature drifts of the electronics are eliminated. Compared to the old analogue BPM electronics, the new DBPMs offer an increased dynamic range (0.2 μA to 2 mA instead of 5 μA to 2 mA) and larger bandwidth (10 kHz instead of 10 Hz).  
THPCH096 Intra Bunch Train Feedback System for the European X-FEL 3017
 
  • V. Schlott, M. Dehler, B. Keil, R. Kramert, A. Lounine, G. Marinkovic, P. Pollet, M. Roggli, T. Schilcher, P. Spuhler, D.M. Treyer
    PSI, Villigen
 
  After joining the preparatory phase of the European X-FEL project, the Paul Scherrer Institut (PSI) agreed in taking over responsibility for electron beam stabilization by developing a fast intra bunch train feedback (IBFB) system, which will be tested in its prototype version at the VUV-FEL facility at DESY. The IBFB will make use of the long bunch trains provided by the superconducting drive accelerators of the VUV- as well as the European X-FEL allowing to damp beam motions in a frequency range of a few kHz up to several hundreds of kHz applying modern control algorithms in a feedback loop. The FPGA-based, digital data processing and the low latency time (preferably < 200 ns) permit the elimination of long range (from bunch train to bunch train) and ultra fast (bunch by bunch) repetitive beam movements by adaptive feed forwards. In this paper, we will introduce the IBFB design concept and report on first test measurements with newly designed stripline beam position monitors for the VUV-FEL.  
THPLS061 Status of the Swiss Light Source 3424
 
  • A. Lüdeke, Å. Andersson, M. Böge, B. Kalantari, B. Keil, M. Pedrozzi, T. Schilcher, V. Schlott, A. Streun
    PSI, Villigen
 
  The Swiss Light Source (SLS) is a 3rd generation synchrotron light source in operation since 2001. The paper will point out the recent activities to enhance machine operation and provides an overview about the new beamlines currently under construction at the SLS.