A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Böge, M.

Paper Title Page
THPLS061 Status of the Swiss Light Source 3424
 
  • A. Lüdeke, Å. Andersson, M. Böge, B. Kalantari, B. Keil, M. Pedrozzi, T. Schilcher, V. Schlott, A. Streun
    PSI, Villigen
 
  The Swiss Light Source (SLS) is a 3rd generation synchrotron light source in operation since 2001. The paper will point out the recent activities to enhance machine operation and provides an overview about the new beamlines currently under construction at the SLS.  
THPLS062 Sub-picosecond X-ray Source FEMTO at SLS 3427
 
  • A. Streun, A. Al-Adwan, P. Beaud, M. Böge, G. Ingold, S. Johnson, A. Keller, T. Schilcher, V. Schlott, T. Schmidt, L. Schulz, D. Zimoch
    PSI, Villigen
 
  The FEMTO source at the SLS (Swiss Light Source) employs laser/e-beam 'slicing' to produce sub-picosecond x-ray pulses for time resolved pump/probe experiments. The final design of the source, the status of construction and commissioning as well as the first experimental results will be presented.  
THPLS138 Fast Polarization Switching at the SLS Microspectroscopy Beamline POLLUX 3610
 
  • M. Böge, U. Flechsig, J. Raabe, T. Schilcher
    PSI, Villigen
 
  POLLUX is a new microspectroscopy facility which will be operated at a bending magnet at the Swiss Light Source (SLS). It offers spectroscopy with sub-micrometer spatial resolution for polymer science and magnetism. First user operation is scheduled for summer 2006. One of the novel envisaged options of the beamline is the usage of circular polarized light. The circular polarization will be generated by a localized angular steering of the electron beam within the bending magnet. This is accomplished by means of the global fast orbit feedback system of the SLS which allows to stabilize the electron beam to the sub-micrometer level up to frequencies of ~100 Hz. Due to the adapting coupling compensation involving dedicated adjacent skew quadrupoles, this steering becomes practically transparent to the other beamlines. Polarization switching rates of a few Hz are within reach.