CYCLOTRONS 2007 The 18th International Conference on Cyclotrons and Their Applications

Developments of the RCNP cyclotron cascade

<u>K. Hatanaka</u>, M. Fukuda, T. Saito, T. Yorita, H. Tamura, M. Kibayashi, H. Okamura, A. Tamii, Y. Sakemi, K. Nagayama, M. Uraki, S. Morinobu

Research Center for Nuclear Physics Osaka University

October 3, 2007 Giardini Naxos, Messina, Italy

Outline

1. RCNP Cyclotron Facility 2. Flat-top Acceleration System (TUPPRA27) 3.18 GHz Superconducting ECR Ion Source **4. New Beam Line 5. New Control System 6. New Power Supplies** 7. Summary

Neutron energy spectrum

Research programs at the RCNP cyclotron facility

Ø Nuclear Physics

Few nucleon system Medium modification of the interaction Spin isospin excitations Giant resonance Heavy ion physics with radioactive isotopes

Ø Fundamental Symmetry

Ultra Cold Neutron ²¹⁰Fr EDM

Ø Interdisciplinary Researches

Nuclear chemistry Biological science Material science Radiation damage of semiconductor devices

Requirements for Beam Conditions of AVF Cyclotron

Conditions	High Intensity Mode	High Resolution Mode	Flat-top Acceleration	
Intensity	a few mA	hundreds nA	Increasing	
Energy spread	1 ~ 5*10 ⁻³	0.5 ~ 1*10 ⁻³	~ 1*10 ⁻⁴	
Emittance	10 p mm mr	~ 5p mm mr	< 5 p mm mr	
Extraction	Multi-turn	Quasi-single-turn	Pure single-turn	
Transmission efficiency	Low	High	Very high	
Beam halo	Small	Small	Halo-free	

2. Flat-top Acceleration System

• Principle

Flat-top Cavity

Flat-top Voltage Waveform

Dee-voltage pickup electrode

facing the Dee electorode, placed near the acceleration gap, used for regulation of RF system.

Example of the pickup voltage waveform

53MeV proton (300MeV @Ring) f₁ = 15.417 MHz f₅ = 77.084 MHz

Improvement of 300 MeV Proton Beam

Energy spread and intensity of 300 MeV proton beam

- transferred to Grand-RAIDEN in achromatic mode
- elastically scattered off a gold target : 197Au(p, p) at 8 deg., 1.68 mg/cm² thick

3. 18 GHz Superconducting ECR Ion Source

Highly charged heavy ions A variety of heavy ions at high intensity

Superconducting Coils

Production of Heavy Ions

Gaseous ions such as ^{16, 18}O, ⁴⁰Ar, ⁸⁶Kr

¹¹B ion by MIVOC method using o-carborane(C₂B₁₀H₁₂)

Charge State Distributions (I)

Charge State Distribution (II)

- Production of ¹¹B ion
 - MIVOC (Metal Ion from VOlatile Compounds)
 - o-carborane $(C_2B_{10}H_{12})$
 - vapor pressure of 1-2 Torr.

Emittance Measurement

Energy Spread Measurement

5. New Control System

- Background of the renewal
 - Difficulty in maintenance of the
 - Very slow processing speed
- PC-base control system
 - Maintaining hierarchical control system
 - Distributed control system using network
 - 3 sets of main console
 - "InTouch" software for human machine interface
- New local controller
 - PLC(Programmable Logic Controller)

6. New Power Supplies

- Background of the renewal
- More than 35 years have passed since the fabrication of the AVF cyclotron.
- Most of electric parts are not available now.
- Trim coil power supplies
 - 16 power supplies
 - modification of max. coil currents
- RF power supplies for a final amplifier tube
 - Screen-grid
 - Control-grid
 - Filament

7. Summary

- Ø The upgrade of the RCNP AVF cyclotron has been successfully started and is continued.
- Ø The beam quality and intensity of 300 MeV proton has been improved by the flat-top acceleration in the AVF cyclotron. Developments are being performed to apply the system to other beams.
- Ø An 18 GHz superconducting ECR ion source has been commissioned to increase the beam intensity of highly-charged heavy ions; 7.5 MeV /u ⁸⁶Kr²³⁺ was delivered for experiments.
- Ø A new beam line has been installed to diagnose the quality of the beam from the AVF cyclotron and helps to make it match to the acceptance of the ring cyclotron. It also makes 10-400 MeV protons and 1-100 MeV/u heavy ions available for a variety of researches in nuclear physics and fundamental physics as well as interdisciplinary studies.

Development of Flat-top Accelerated Beam

Particle	Energy (MeV)		AVF fundamental	Harmonics	
	Ring	AVF	frequency (MHz)	Order	Freq. (MHz)
⁴ He 400	400	87.14	10.144018	5	50.72009
	400			7	71.008126
³ He	420	87.81	11.65007	5	58.25035
⁸⁶ Kr ²¹⁺		640	6.0129	9	54.1161
d	80	18.73	6.75	9	60.75
pol.D	200	43.6	10.11632	5	50.5816
р	200	39.32	13.375664	5	66.87832
р	250	46.7	14.496449	5	72.482245
р	300	53.3	15.416773	5	77.083865

Under development

