Emittance Growth in Resonance Crossing in FFAGs

K.Y. Ng Fermilab

X. Pang, F. Wang, X. Wang, S.Y. Lee IUCF, Indiana University

18th International Cyclotron Conference on Cyclotrons and Their Applications Giardini Naxos, Messina, I taly October 1-5, 2007

October 1-5, 2007

Cyclotron Conference, 2007

WEXCR04 1

Introduction

- § FFAG a favorable candidate for proton drivers.
- § Constant guide field rep rate can be very high, in the KHzs.
- § Scaling design nonlinear fields, large magnet apertures.
- § Non-scaling design linear fields, much smaller magnet apertures.
- § Disadvantage: tunes change by many units in a ramp cycle.
- § Beam quality can deteriorate when crossing resonances.
- § Tune-ramp rate

$$\frac{\Delta \nu_{x,x}}{\Delta n} \sim -\left(1 - \frac{D}{R}\right) \frac{\nu_{x,x}}{2\beta^2 E} \frac{\Delta E}{\Delta n} \quad \text{typically} \sim -10^{-3} \text{ to } -10^{-2} \text{ per turn}$$

October 1-5, 2007

An example

- § Ruggiero suggested 3 FFAGs for BNL AGS 10 MW proton driver.
- § Tunes change from $(v_x, v_z) = (40,38.1)$ to (19.1,9.3)§ Cross systematic 4th and 6th resonances: (P=136) $4 \cdot_x = P$, $4 \cdot_z = P$, $2 \cdot_x + 2 \cdot_z = P$ $6 \cdot_x = P$, $6 \cdot_z = P$, $2 \cdot_x + 4 \cdot_z = P$, $4 \cdot_x + 2 \cdot_z = F$ § S.Y. Lee pointed out emittance growth can be large if crossing rate is slow, and gave a scaling relationship.
- § Thus phase advance per cell cannot be near 90° and 60°.
- § Lattice design can become very restricted.

The Model

- § Lee, et al. studied sp-ch driven 4th order systematic resonances and field-error driven linear resonances.
- § We study here sp-ch driven 6th order systematic resonances and octupole driven 4th order parametric resonances.
- § Our study bases on simulations.
- § Lattice is similar to Fermilab Booster, with P = 24 FODO cells.
- § Sp-ch kicks applied at every half cell.
- § Transport matrices used from magnet to magnet.
- § Kinetic energy fixed at 1 GeV; tunes allowed to ramp.
- § Syn. oscillation neglected since emittance usually grows much faster.
- § Assume bi-Gaussian distribution: $\rho(x,z) = \frac{Ne}{2\pi\sigma_x\sigma_z} e^{-x^2/2\sigma_x^2 x^2/2\sigma_z^2}$

Source of Systematic Resonances

- § Effective force is easier to use than the exact one.
- § Exact analytic expression has an apparent singularity when $\sigma_{a} = \sigma_{a}$

6th order Systematic Resonances

§ In action-angle variables,

$$\begin{aligned} G_{60\ell} &= \frac{1}{5760\pi} \oint \frac{K_{sc} \beta_{s}^{3} (8\sigma_{s}^{3} + 9\sigma_{a}\sigma_{z} + 3\sigma_{z}^{2})}{\sigma_{z}^{5} (\sigma_{a} + \sigma_{z})^{3}} e^{i(6\phi_{a} - 6\omega_{a}\theta + 6\theta)} ds \\ G_{06\ell} &= \frac{1}{5760\pi} \oint \frac{K_{sc} \beta_{z}^{3} (8\sigma_{z}^{2} + 9\sigma_{x}\sigma_{z} + 3\sigma_{x}^{2})}{\sigma_{z}^{5} (\sigma_{x} + \sigma_{z})^{3}} e^{i(6\phi_{x} - 6\omega_{x}\theta + 6\theta)} ds \end{aligned}$$

 $\$ Can factor out sp-ch dependent part of resonance strength, giving dimensionless reduced strength g_{mnl} :

Sample Simulation

§ Crossing systematic resonances:

 $6v_x = P$, P = 24 $6v_{z} = P_{r}$ P=24 § Resonance strengths: $|g_{60P}| = 0.0062$ $|g_{06P}| = 0.0046$ $dv_{x.z}/dn = -0.004$ § Emittance growth factor (EGF): Final emit./initial emit.

October 1-5, 2007

§ Given $\Delta v_{sc,x}$ and $|g_{60P}|$ or $\Delta v_{sc,z}$ and $|g_{06P}|$,

plots give min. tune ramp rate so that EGF remains tolerable.

§ Can serve as a guideline for FFAG design.

4th Order Parametric Resonance

§ One octupole is added at D-magnet in last cell to mimic random 4th order parametric resonance. 4v_x=1

§ Potential: $V_4(x,z) = -\frac{1}{4!} \frac{B''}{B\rho} (x^4 - 6x^2 z^2)$ § In action-angle variables: $V_4(J_x, J_z, \psi_x, \psi_z, \theta) \approx -\frac{1}{R} \sum_{r} |G_{abe}| J_x^2 \cos(4\psi_x - \ell\theta + \chi_{abe})$

§ Octupole kick:
$$\begin{cases} \Delta x' = \frac{1}{6} S_4(x^3 - 3xx^3), \\ \Delta x' = \frac{1}{6} S_4(x^3 - 3x^2x), \end{cases} \quad S_4 = \frac{B''\ell}{B\rho}$$

§ Dimensionless reduced resonant strength: $g_{mnt} = G_{mnt}\epsilon_{max}$

Cyclotron Conference, 2007

Sample Simulation

- § Octupole strength: $S_4=20 \text{ m}^{-3}$
- § Resonance strength:

 $|g_{041}| = 0.0038$ $dv_{x,z}/dn = -0.0005$

- $\Delta v_z = 0.21$
- § Crossing many parametric resonances
- § Unlike previous simulations, there is big beam loss.

Cyclotron Conference, 2007

Critical Tune-Ramp Rate

- § Given $\Delta v_{sc,z}$ and $|g_{041}|$, this gives min. tune ramp rate so that EGF remains tolerable.
- § It is clear that sp-ch contribution is very significant.

Conclusion

- § Power scaling laws obtained between EGF and dv_z/dn for crossing sp-ch driven systematic 6th order resonances and octupole-driven 4th order parametric resonance.
- § For a ring like Fermilab Booster,

with $|g_{60P}| \sim 0.0062$, $\Delta v_{sc,x} = 0.31$, $(dv_x/dn)_{crit} \sim -0.0014/turn$

§ For octupole driven resonance,

with $|g_{041}|$ ~0.0038, $\Delta\nu_{sc,z}$ =0.45, $(d\nu_z/dn)_{crit}$ ~ -0.0020/turn

Conclusion

§ Effective sp-ch force $F_{x,se} = -\frac{\partial V_{se}}{\partial x} \approx \frac{K_{so}x}{\sigma_x(\sigma_x + \sigma_z)} e^{-\frac{x^2 + \sigma^2}{(\sigma_x + \sigma_z)^2}},$ $F_{z,se} = -\frac{\partial V_{se}}{\partial x} \approx \frac{K_{se}x}{\sigma_z(\sigma_x + \sigma_z)} e^{-\frac{x^2 + \sigma^2}{(\sigma_x + \sigma_z)^2}}.$

is easy to use, but not derivable from a potential.

- § Nevertheless, Cauchy-Riemann theorem is approx. satisfied; thus the potential is approximately correct.
- § There may be problems when 2 transverse spaces are mixed together like the systematic sum resonances.
- § We are currently working on a better approximation for the sp-ch force.

