Hardware Commissioning of the RIKEN **Superconducting Ring Cyclotron** TUPPRA16 Jun'ichi Ohnishi The Magnetic Field of the Superconducting **Ring Cyclotron** MOXCR01 Akira Goto Commissioning of the RIBF at RIKEN TUPPRA17 Nobuhisa Fukunishi (Yamada) Present Performance and Commissioning **Details of RIBF Accelerator Complex** WEPPRA02 Kazunari Yamada **TUPPRA15** Naruhiko Sakamoto Details of Beam Diagnostic System for RIKEN RF System for the RIBF Superconducting Superconducting Ring Cyclotron **Ring Cyclotron**

H. Okuno, K. Yamada, J. Ohnishi, N. Fukunishi, N. Sakamoto, O. Kamigaito, M. Fujimaki,

H. Hasebe, K. Kumagai, T. Maie, M. Nagase, S. Yokouchi, K. Ikegami, M. Kase,

A. Goto and Y. Yano, *RIKEN Nishina Center*

SRC: the World's First Superconducting Ring Cyclotron

K = 2,600 MeV Max. Field: 3.8T (235 MJ) RF frequency: 18-38 MHz Weight: 8,300 ton Diameter: 19m Height: 8m

Sector Magnets :6 RF Resonator :4 Injection elements. Extraction elements.

Self Magnetic Shield Self Radiation Shield

The history of the commissioning

Date	Phase I (Test of the S.C. Magnets)	Date	Phase II (toward the first beam)
05/9/19	The 1 st Cool-down started	06/6/24	Arrival of RF resonators
05/10/13 1:00AM	All the main coils transited to superconducting state.		RF, Beam diagnostics, Vacuum pumping system were installed
05/11/7	Excitation test (Imain = 5000 A, Itrim = 3000 A)	06/10/18	Vaccuum for the beam < 10 ⁻⁵ Pa
05/11/8	Trouble due to a He leak	06/11/~	RF conditioning Started.
06/4/15	Full excitation again	06/12/17	Beam injection to SRC
06/4/17- 06/6/14	Magnetic field measurements	06/12/28	The first beam from SRC!
06/6/14	Fast shutdown test from full excitation	07/03/23	The first Uranium beam!
		07/05/~	New isotope search

BIG Errors?

In the excitations, we continuously measured the forces using the strain gauges attached to all the supports, checking whether our calculations are correct or not.

Coil voltages in a fast shut-down test from full excitation

All the coils were safely shut down even in emergency.

Measured field profiles along the hill axis

. Good agreement (0.16%~0.35%) . Small field dispersion among the sectors

Field Disturbances .SM1 has a slightly different shape. .Disturbance from MIC2 and MDC3

Small enough to be adjusted by the correction coils in the magnetic channels and aux. power supplies of the main and trim coils. Main Coil: Bending power over the acceleration region. Trim Coil: Isochronous field

Difference between measured and calculated fields

27

SRC Beam commissioning ²⁷AI¹⁰⁺ 345MeV/u (pilot beam for ²³⁸U⁸⁸⁺

I 12/17 18:20 AI beams were injected to SRC.

I 12/21 16:00 Acceleration Tuning started. (currents of Imain, Itrim, Injection orbits and phase of RF)

12/23 21:00 Acceleration up to 10cm from r_{inj}.
12/24 02:00 Acceleration up to 100cm from r_{inj}.
12/25 23:45 Something @100cm from r_{inj}.
12/26 daytime Removal of Q-mass
12/28 6:00 Beam injection re-started.

I 12/28 6:08 Acceleration up to the final turns

I 12:28 16:00 The first beam extracted!

After the first beam

To the next stage 2007/3/11 ⁸⁶Kr²⁶⁺ 345MeV/u (pilot for²³⁸U⁸⁶⁺) 2007/3/23 The first Uranium beam (TOP priority)

2007/5/ ~ New isotope search

Improvement

- RF resonators
- EIC/EDC (high voltage device)

Summary

- 1. The SRC sector magnets were successfully cooled down and excited without quench.
- 2. Supports against magnetic forces, quench protection, cooling system, etc worked well as designed.
- 3. The field measurement:
 - a. Field disturbances can be corrected.
 - b. Data base to create isochronous fields for acceleration.
- 4. RF system, vacuum system and beam diagnostic system were successfully installed and tested under the stray fields arising from the sector magnets.
- 5. The SRC started working as an accelerator from the end of 2006.