Status of the K-500 uperconducting Cyclotron Project

THE

BIKASH SINHA

Variable Energy Cyclotron Centre Kolkata, INDIA

Cyclotrons 2007, Giardini Naxos, Italy, October 01, 2007

Expected Ion Beams from K 500 (based on 10 microamperes extracted from ion source)

Maximum energy per nucleon available

Operating Diagram & Initial Ions Expected

SUPERCONDUCTING COIL

Coil winding in progress

Pressure arm assembly of Coil Winding Machine

Cryostat with Vapour cooled current lead and Refrigeration Port.

CRYOSTAT FABRICATION

Insulated bobbin & radiation shield being inserted to vacuum chamber

CRYOGENIC PLANT & CRYOGEN DELIVERY SYSTEM

Overhauling of Liquid Helium Plant

Cold Box With Exterior MLI

Cold Box Without MLI

Cool-down of superconducting cyclotron magnet

Connections to magnet

ENERGISATION OF MAGNET

Main Magnet Power Supplies

GENERAL FEATURES

§1000 A / 20 V, 10 ppm (current regulated)

Series pass element transistor bank

§12-pulse thyristor-based controlled rectifier

§SCR pre-regulator

§RF shielding and filters

§Safety interlocks

§18-bit D/A Converter

§16-bit A/D Converter

§Computer interface (RS-232 / 422)

SPECIAL FEATURES

§Slow dump resistors and fast dump resistors are provided for dissipating the energy stored in the coils outside the cryostat

Operator's Console for Main Magnet Power Supplies

FACILITIES

- Remote operation (ON/OFF, HALT, STOP)
- Current setting
- Status and parameter monitoring
- Online data logging with time stamp

Slow Dump

The states of the four contacts when slowdump is in progress

Fast Dump

The states of the two contacts when fast dump is in progress

Profile of current decay for fast dump initiated at 400 A

E9 Support Link was tightened to +145 degrees

Max. Current: 750 A

Magnetic Field Measurements and Analysis

1st Harmonic minimization

Shiming To Correct Average Field Profile

RF SYSTEM & RF POWER SUPPLIES

RF SYSTEM SPECIFICATION

- Frequency range: 9 to 27 MHz
- Harmonic Modes: 1,2,3,4,5,7
- Peak Dee Voltage: 100 kV
- Frequency Stability: 1 x 10⁻⁷
- Amplitude Stability: 1 x 10⁻⁴
- Phase Stability: ±0.5°

FINAL RF AMPLIFIER

- Eimac 4CW 150000E Tetrode based power amplifier
- Output Power: 100 kW max. at 50 Ohm
- Power gain ~ 22 dB
- Input Power: 600 W at 50 Ohm
- Mode of operation: Class AB
- | /4 Resonant cavity similar to main Dee-cavity
- Tunable from 9 MHz to 27 MHz by movable Sliding short
- Sliding short travel ~ 2184 mm. max.
- Precise movement of sliding short by PC-based stepper motor controlled system

INPUT CIRCUIT FOR RF AMPLIFIER

RF Power Supplies Fabricated at VECC

250 KVA Transformer

Rectifier Bank Assembly **Anode Power Supply**

(0 to 20KV DC, 22.5A, 7% load regulation, fast crowbar protection)

Filament Power Supply (0 to 15.5 V ± 0.75 V DC, 215A at 15.5 V)

Screen Grid Power Supply (500 to 1600 V DC, 0.5A, 0.006% load regulation)

Control Grid Power Supply (-400 to -500 V DC, 100 mA, 0.01% load regulation)

RF SYSTEM (Mechanical)

DEE

OUTER CONDUCTOR SPINNING

Hydro-test of coil tank liner cooling tubes

Lower RF Liner

Installation of inner conductors below the magnet

Three inner conductor assemblies on lower support structure

Dees with lower RF liner in position

Lower outer conductor spinning assemblies

14 GHz ECR ION SOURCE

SPIRAL INFLECTOR

Fabrication work at Central Workshop/NFTDC

Delivery in June

Passive magnetic channels

Beam Diagnostic Probe

Electrostatic Deflector

TRIM COIL WATER TEMPERATURE CONTROL SYSTEM

Redundant standalone controller architecture along with redundant temperature sensors

Maintain temperature difference within ±0.5°C between pole tips and magnet yoke

Minimise relative thermal expansion or contraction of pole tips with respect to magnet yoke of Superconducting Cyclotron

Control conductivity by feed-bleed mechanism with main LCW system

Utilization of the superconducting Cyclotron

K500 SUPERCONDUCTING CYCLOTRON EXTERNAL BEAMLINE LAYOUT

Major Facilities

Nuclear Physics

- Scattering Chamber
- Charged Particle

Detector Array

- Neutron Detector Array
- High Energy Gamma Ray Array
- Ion Trap

Condensed Matter

- X-ray Diffractometer
- Acoustic emission setup
- Vibrating sample magnetometer

Nuclear Chemistry

- Activation analysis
- Pneumatic carrier facility
- Multitracer studies

Nuclear Physics with superconducting cyclotron

Facilities

EOS ?? xotics -10 km

5ρ. Po

0

Temperature Thermalisation

Dynamics

Deformation

EOS

Nuclear Compressibility

Asymmetric Nuclear matter And Stellar **Evolution**

Super Heavy Nuclei

4p neutron multiplicity detector

Prototype Si-Si-Csl(TI) array

High energy gamma ray detector array

Gamma array at Exptl hall

Deformed configuration of 32S* Studied by GDR splitting

Neutron Multiplicity detector

Prototype neutron detector

Commissioning: March – April 2008

