PAUL SCHERRER INSTITUT

The first year of operation of PSI's new SC cyclotron and beam lines for proton therapy.

Marco Schippers, Jürgen Duppich, Gudrun Goitein, Eugen Hug, Martin Jermann, Anton Mezger, Eros Pedroni, for the PROSCAN team (>50 persons)

Acceptance tests of cyclotron

Commissioning of beam lines

Operation experience

Acceptance tests and commissioning of cyclotron

250 MeV SC-cyclotron

basic design: NSCL (Henry Blosser)

Delivered by ACCEL/Varian

an intensive collaboration

April 2001 April 2005 June 2006 Febr 2007

- Measurements for information & reference, not specified e.g.: field maps
- Acceptance of subsystems (*factory acceptance by ACCEL*) e.g.: coil-winding vacuum
- Acceptance tests (37) <u>defined by PSI</u> acceptance measurements e.g.: beam quality nr. of beam interruptions access to components / exchange time

Dec 05 - Febr 06 33 done & OK

- acceptance checks
- e.g.: documentation

Energy measurement

Ion chamber in water tank to measure proton range

Beam on/off and stability

Necessary for fast dynamic scanning (Gantry-2)

Vertical deflector in cycl. Center

Acceptance tests:

- repetition rate 1 kHz
- beam off < 50 μ sec
- intensity stability σ <5% (for Gantry-1 and München: $\sqrt{}$

Scan modes of new Gantry-2

Spot scanning: step & shoot

PAUL SCHERRER INSTITUT

Intensity + beam scanning:

David Meer, Christian Hilbes, (Dec. 2006)

Intensity control

Extraction efficiency

>80% extraction efficiency: Low dose to service staff

Commissioning of beam lines

Beam-energy adjustment

Carbon wedge degrader 238-70 MeV 5 mm ∆Range in 50 ms

PAUL SCHERRER INSTITUT

Energy scanning, Estep ~5 mm range in water.

Transmission

Dual scattering system for OPTIS-2

Transmission = 0.5% at 70 MeV, dp/p=+/- 1% => Optimize scattering system

The Multiple Ring solution follows the ideas presented by Yoshihisa Takada (poster PTCOG43)

Operation experience

Operation during patient treatment

Febr-May 2007: 18 patients treated at Gantry-1

PAUL SCHERRER INSTITUT

first 15 weeks of patient treatment

Machine "Up" when: HF "on" AND Ion source "high"

961 hours Up Time 18 patients Gantry-1

$$Avail = 1 - \frac{Unsched Down.Time}{Up.Time}$$

Analysis of Unsched. Down Time

UDT per week: <u>occurs as single events</u> ⇒ MTBF (UDT>0.5 h) ≈ 1.5-2 weeks (typically at start up)

- We are happy with performances of cyclotron and beam lines
- Last problems are being solved
- Patient treatment has started at Gantry-1 and runs successfully

Currently in progress: (see poster)

- \Rightarrow acquire experience and optimize operation
- \Rightarrow commissioning OPTIS-2
- \Rightarrow installation Gantry-2

