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1 Introduction

Popularity of Lévy processes

(Paul and Baschnagel 1999, Mantegna and Stanley 2001, Barndorff–

Nielsen et al 2001 and Cont and Tankov 2004):

from statistical physics: stable processes

(Bouchaud and Georges 1990, Metzler and Klafter 2000, Paul

and Baschnagel 1999, Woyczyński 2001),

to mathematical finance: also non stable, id processes

(Cont and Tankov 2004 and references quoted therein).

stable processes: selfsimilarity, but if non gaussian

• infinite variance (truncated distributions);

• the x decay rates of the pdf ’s can not exceed x−3.
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infinitely divisible (id) processes: stationarity vs. selfsimilarity,

the pdf of increments could be known only at one time scale,

but new applications in the physical domain begin to emerge

(Cufaro Petroni et al 2005, 2006, Vivoli et al 2006):

the motion in the charged particle accelerator beams points

to a id, Student, Ornstein–Uhlenbeck (OU) process.

Dynamical description: stochastic mechanics (sm)

(Nelson 1967, 1985, Guerra 1981, Guerra and Morato 1983)

suitable for many controlled, time–reversal invariant systems

(Albeverio, Blanchard and Høgh-Krohn 1983, Paul and Baschnagel

1999, Cufaro Petroni et al 1999, 2000, 2003, 2004)

Generalize sm to the non Gaussian Lévy noises:

a sm with jumps to produce halos in accelerator beams.
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Lévy processes already have applications in quantum domain:

• spinning particles (De Angelis and Jona–Lasinio 1982)

• relativistic quantum mechanics (De Angelis 1990)

• stochastic quantization (Albeverio, Rüdiger and Wu 2001).

Here: not only quantum systems, but also general complex sys-

tems (particle beams) with dynamical control.

Only one dimensional models, without going into the problem of

the dependence structure of a multivariate process

At present no Lévy sm is available: we just have OU processes

Possible underlying Lévy noises: non stable, selfdecompos-

able, Student processes

Student laws T (ν, δ) are not closed under convolution:

the noise distribution will not be Student at every time t.
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Results for a ν = 3 Student noise (Cufaro Petroni 2007a, 2007b):

1. for integer times t = n the noise transition law is a

mixture of a finite number of Student laws; only at

t = 1 this law is exactly T (3, δ);

2. for every finite time t the noise pdf asymptotic behavior

always is the same (x−4) as that of the T (3, δ) law; this

is the behavior put in evidence by Vivoli et al 2006 in the

solutions of the complex dynamical system used to study the

beams of charged particles in accelerators.

3. the stationary distribution of the OU process with T (3, δ)

noise can be calculated, and its asymptotic behavior again

is x−4.
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2 Lévy processes generated by id laws

Lévy process X(t): a stationary, stochastically continuous, in-

dependent increment Markov process.

Given a type of centered, id distributions with chf ’s ϕ(au)

(a > 0), the chf of the transition law of in the time interval

[s, t] (T > 0) is

Φ(au, t− s) = [ϕ(au)](t−s)/T (1)

and the transition pdf with initial condition X(s) = y, P-q.o.

p(x, t| y, s) =
1

2π
lim

M→+∞

∫ M

−M

[ϕ(au)](t−s)/T e−i(x−y)u du (2)
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Along the evolution stable laws remain within the same type

and the process is selfsimilar

However, all the non gaussian stable laws:

• do not have a finite variance;

• show a rather restricted range of possible decays for large x.

Non stable, id laws have none of these shortcomings

but the Lévy processes show no selfsimilarity.

When closed under convolution:

the evolution is in the time dependence of some parameter,

but the laws do not belong to the same type.

When not even closed under convolution:

the transition laws do not remain within the same family

the evolution is not just in the time dependence of parameters.
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Student/Variance Gamma laws are id, non stable

Student laws are not even closed under convolution, but

• they are selfdecomposable

• they can have a wide range of decay laws for |x| → +∞;

• they can have finite variance

Selfdecomposable laws have two relevant properties:

1. can produce non stationary, selfsimilar, additive processes

2. alternatively can produce Lévy processes

3. are the limit laws of Ornstein–Uhlenbeck processes

When σ2 < +∞, id Lévy processes have variance σ2t/T :

ordinary (non anomalous) diffusions
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3 Particular classes of id distributions

Variance Gamma (VG) laws VG(λ, α) (λ > 0 and α > 0):

fV G(x) =
2α

2λΓ(λ)
√

2π
(α|x|)λ− 1

2 Kλ− 1
2
(α|x|)

ϕV G(u) =

(
α2

α2 + u2

)λ

α is a spatial scale parameter; λ classifies different types.

VG(1, α) are the Laplace (double exponential) laws L(α)

f(x) =
α

2
e−α|x|, ϕ(u) =

α2

α2 + u2

Asymptotic behavior of VG(λ, α) is (α|x|)λ−1e−α|x|
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The VG laws are id, selfdecomposable, but not stable.

The VG(λ, α) with a fixed α are closed under convolution:

VG(λ1, α) ? VG(λ2, α) = VG(λ1 + λ2 , α)

Student laws T (ν, δ) (ν > 0, δ > 0 and B(z, w) Beta function)

fST (x) =
1

δ B
(

1
2
, ν

2

)
(

δ2

δ2 + x2

) ν+1
2

(3)

ϕST (u) = 2
(δ|u|) ν

2 K ν
2
(δ|u|)

2
ν
2 Γ

(
ν
2

) (4)

δ is a spatial scale parameter; ν classifies different types.

Asymptotic behavior of T (ν, δ) is (|x|/δ)−ν−1
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T (1, δ) class of the Cauchy C(δ) laws

f(x) =
1

δ π

δ2

δ2 + x2
, ϕ(u) = e−δ|u|

The Student distributions T (ν, δ) are id, selfdecomposable,

but not stable with one notable exception:

the Cauchy laws T (1, δ) = C(δ).

The Student laws are not even closed under convolution.
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4 The VG and Student processes

The transition chf for a VG(λ) process (α = 1, T = 1, s = 0

and y = 0) is:

Φ(u, t|λ) = [ϕV G(u)]t =

(
1

1 + u2

)λt

(5)

Increment law in [0, t] is X(t) ∼ VG(λt) and the pdf is

p(x, t|λ) =
2

2λtΓ(λt)
√

2π
|x|λt− 1

2 Kλt− 1
2
(|x|) (6)

Asymptotic behavior (all the moments exist)

p(x, t|λ) ∼ |x|λt−1 e−|x|, |x| → +∞
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The Student family T (ν, δ) is not closed under convolution

An explicit form of the transition pdf not available

We study the ν = 3, T (3, δ) Student process candidate to de-

scribe the increments in the velocity process for particles in an

accelerator beam (Vivoli et al 2006).

For δ = 1, the T (3, 1)–process has transition pdf

p(x, t| 3) = <
{

et+ix Γ(t + 1, t + ix)

π(t + ix)t+1

}
(7)

with Γ(a, z) the incomplete Gamma function, and

p(x, t| 3) =
2t

πx4
+ o

(|x|−4
)
, |x| → +∞ (t > 0)

For fixed, finite t > 0 the asymptotic behavior of p(x, t| 3) is

always infinitesimal at the same order |x|−4 of the original T (3, 1)
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At integral times t = n = 1, 2, . . . the transition pdf p(x, n| 3) of

the T (3, 1)–Student process is a mixture of Student pdf ’s with

• odd integer orders ν = 2k + 1 with k = 0, 1, . . .,

• integer scaling factors δ = n,

• relative weights

qn(k| 3) =
(−1)k

2k + 1

2k+1∑
j=0

(
n

j

)(
2k + 1

j

)(
j

k

)
(j + 1)!

(−1

2n

)j

namely: mixtures of T (2k +1, n) laws with k = 1, . . . , n with no

Student law of order smaller than ν = 3

The distributions qn(k| 3) are displayed in Figure 1.
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Figure 1: Mixture weights of the integer time (t = n) components

for a Student process with ν = 3.
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5 Ornstein–Uhlenbeck processes

The VG and Student processes have no Brownian component:

they are pure jump processes

The VG and Student processes have infinite activity: namely the

set of jump times is countably infinite and dense in [0, +∞].

At first sight the simulated samples of both a VG and a Stu-

dent process do not look very different from that of a Wiener

process.

Lévy diffusions Y (t):

solutions of SDE driven by a Lévy process X(t)

dY (t) = α(t, Y (t)) dt + dX(t)
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Compare Ornstein–Uhlenbeck (OU) processes

driven by either VG or T (3, δ) noises X(t)

dY (t) = −b Y (t) dt + dX(t) (8)

with usual OU process driven by Brownian noise B(t)

dY (t) = −b Y (t) dt + dB(t) (9)

Figure 2: samples of 5 000 steps with noise laws in the Table

(a) (b) (c)

N (0, 1) VG(1,
√

2) T (3, 1)

1√
2π

e−x2/2 1√
2
e−

√
2 |x| 2

π
1

(1+x2)2
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Figure 2: OU processes driven by (a) Brownian motion; (b) VG Lévy
noise; (c) Student Lévy noise; and then (d) Student OU–type process
with restoring force of finite range.
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(a) typical OU process driven by normal Brownian motion,

(b) and (c) OU–type processes driven by VG and Student noises

(a) is rather strictly confined by the restoring force −by

(b) and (c) show spikes going outside the confining region.

(d) take a restoring force of a finite range:

dY (t) = α(Y (t)) dt + dX(t)

α(y) =




−by, for |y| ≤ q;

0, for |y| > q.
q > 0

The restoring force acts only in [−q, q]

When the process jumps beyond y = ±q it diffuses freely:

possible model of halo formation in particle beams
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Role of selfdecomposability in OU processes:

if Y (t) is solution of the OU SDE

dY (t) = −b Y (t) dt + dX(t)

for a Lévy noise X(t) with logarithmic characteristic ψ(u) =

log ϕ(u), then the stationary distribution is absolutely continuous

and selfdecomposable with logarithmic characteristic ψY (u) such

that

ψY (u) =

∫ ∞

0

ψ(ue−bt) dt , ψ(u) = buψ′Y (u)

VG and Student laws are id and selfdecomposable

Then we can explicitly find the stationary laws of the OU pro-

cesses with VG and Student noises.
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OU stationary distribution for a Laplace law VG(1,
√

2/a)

with variance σ2
X = a2:

ψ(u) = − log

(
1 +

a2u2

2

)
, ψY (u) =

1

2b
Li2

(
−a2u2

2

)

where dilogarithm is

Li2(x) =

∫ 0

x

log(1− s)

s
ds

(
=

∞∑

k=1

xk

k2
, |x| ≤ 1

)

variance of the stationary distribution

σ2
Y = −ϕ′′Y (0) =

a2

2b

pdf can be numerically evaluated
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Figure 3: chf and pdf of a OU stationary distribution (black lines),
compared with the chf and pdf of the driving VG(1,

√
2/a) Laplace

noise (red lines). Here a = b = 1.
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OU stationary distribution for a student law T (3, a)

with variance σ2
X = a2:

ψ(u) = −a|u|+log(1+a|u|) , ψY (u) = −a|u|
b
− 1

b
Li2(−a|u|)

variance of the stationary distribution

σ2
Y = −ϕ′′Y (0) =

a2

2b

pdf f(x) can be numerically evaluated and

f(x) ∼ 0.4244× x−4 , x →∞

namely: the stationary solution is not a Student law, but it keeps

the same asymptotic behavior of the driving Student noise.
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Figure 4: chf and pdf of a OU stationary distribution (black lines),
compared with the chf and pdf of the driving T (3, a) Student noise
(red lines). Here a = b = 1.
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6 Conclusions

• An OU process driven by a selfdecomposable T (3, a) Stu-

dent noise seems to be a good candidate as a model for halo

formation in beams of charged particles in accelerators

• The driving Student noise and the stationary laws show the

same asymptotic behavior (x−4) of dynamical simulations

• Selfdecomposable processes are at present under intense scrutiny

for possible use in option pricing (Carr et al 2007)

• A dynamical model (SM) for processes driven by non Gaus-

sian Lévy noises must now be elaborated in order to achieve

a reasonable control of the beam size.
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