

First Commissioning Results of the SuSI ECRIS

Peter Zavodszky

National Superconducting Cyclotron Laboratory

Michigan State University

East Lansing, MI 48824, USA

Cyclotrons 2007 Giardini Naxos, Italy

October 5, 2007

Motivation for Production of Highly Charged Ions

- intense highly charged ions are used in many accelerator applications
- dc beams for RIA/ISF, RIKEN RIB, etc.
- pulsed beams for injection in synchrotrons such as RHIC, LHC, FAIR, hadron therapy
- higher M/Q from an ion source makes the accelerator more compact and less costly
- there is generally a tradeoff between intensity and charge state from an ion source

Key Parameters of an ECRIS

Minimum-B field Confinement

Magnetic field configuration:

$$B_{inj} \gg 4 B_{ECR} \quad B_{ext} < B_{rad} \gg 2 B_{ECR}$$
$$B_{min} \gg 0.8 B_{ECR}$$

I µ log B ^{1.5}

Microwave frequency:

 $W_{e} = qB_{ECR}/m = W_{rf}$

 $I\,\mu\,\text{W}_{rf}^{2}\,M^{-1}\text{t}^{-1}$

Extraction voltage:

I μ U_{ext}^{3/2}

- Plasma chamber geometry (length, diameter) and wall material
- Extraction system (gap, voltage, plasma electrode position)
- Biased disc (voltage, position)

Plasma Electrode Location and Biased Disc Effect

• The beam intensity is strongly dependent on the position of the bias disc

• Desirable to have an adjustable length of the plasma chamber to be able to change the matching conditions between the plasma and the microwaves

SERSE at INFN-LNS Catania, Italy

VENUS at LBNL Berkeley, CA

Superconducting Magnets State of the art cryostat

Beam Transport

New Plasma Chamber

Ta X-ray shielding

Challenges

- & Superconducting Magnet
- & 28 GHz microwave heating
- & X-rays from the Plasma
- & Ion Beam Transport

28 GHz microwave plasma heating

Superconducting ECR Ion Sources at NSCL/MSU I.

SC-ECR (1993) The first dynamically tunable SC ECRIS using the High-B mode Designed by T. Antaya (now at MIT)

First Vertical SC ECR

Designed for 6.4 and 14.5 GHz

High B-mode demonstration at 6.4 GHz

Sextupole field too low for 14.5 GHz

(Quenching)

Superconducting ECR Ion Sources at NSCL/MSU II.

SuSI – Superconducting Source for Ions Current leads Vertical links Solenoid coils Plasma chamber Hexapole coils Moveable injection flange (+30KV) foveable puller electrode Bias disk positioner Extraction box Gas (-30KV) inlet valves H.V. insulator H.V. Insulator 2000 l/s Turbo pump 500 l/s Turbo pump

• maximum magnetic fields: <u>Original Design:</u>

- 2.6 T, 1.5 T axial field
- 1.5 T radial field
- Tested (February 2006):
 - 3.6 T, 2.2 T axial field
 - 2 T radial field
- plas ma chamber diameter: 101.6 mm (aluminum)
- superconducting wire:
- 2x1 mm NbTi
- Cu/SC ratio 1.7
- operating frequency: <u>Phase I:</u> 18 + 14.5 GHz
- <u>Phase II</u>: 24-28 GHz
- maximum extraction voltage: 60 kV (ion source at +30 kV,
- beamline at -30 kV)
- tunable plasma chamber length
- tunable bias disc position

The Flexible Axial Magnetic Field Concept

1000

1000

500

Axial position [mm]

 the relative distance between the resonant zone and plasma electrode can be varied

• the distance between the two magnetic maxima can be varied

• the "depth" of the magnetic minimum can be varied

• the position of the magnetic profile can be shifted

SuSI Magnet Construction I.

The assembly of the SuSI magnet liquid nitrogen thermal shield.

The SuSI magnet cryostat before the super insulation is applied to the front and back end of the liquid nitrogen thermal shield.

SuSI Magnet Construction II.

- Magnet tested in a vertical test dewar Febr.
 2006.
- Cryostat was finished in Sept. 2006.
- Vacuum vessel installation was completed in Dec. 2006.

The SuSI magnet yoke with the injection and extraction hardware and plasma chamber with electrical isolation ready for tests.

SuSI installation and commissioning started in January 2007

SuSI Injection and Extraction

Movable injection hardware with two microwave waveguides

SuSI Photos

Mapping the Magnet I. (solenoids)

Magnetic field maps of the individual solenoid Lines – calculated values with AMPERE Dots – measured values Each coil was mapped at 100 and 300 Amp Magnetic field maps of all solenoids Lines – calculated values with AMPERE Dots – measured values Black: 290, 0, -50, -50, 0, 210 Amp Red: 175, 175, -130, -130, 135, 135 Amp Blue: 0, 390, -220, -220, 320, 0 Amp Green: 390, 0, -66, -66, 0, 280 Amp

Mapping the Magnet II. (hexapole)

SuSI First plasma ignited on March 29, 2007

SuSI First charge state distribution obtained on June 8, 2007

Preliminary Results with ⁴⁰Ar^{q+}

Preliminary Results with ⁸⁶Kr^{q+} and ¹²⁹Xe^{q+}

tuned for 18+ (302 eµA) (I_{drain} =7.0 mA) 900 W 18 GHz + 700 W 14.5 GHz O₂ mixing gas; 25 kV extraction B.D. = -90 V tuned for 20+ (325 eµA) (I_{drain} =7.0 mA) 780 W 18 GHz + 310 W 14.5 GHz O₂ mixing gas; 27 kV extraction B.D. = -100 V

NSCL People Involved in the SuSI Design

Ion Source Physicists: Dallas Cole Guillaume Machicoane Peter Zavodszky

Accelerator Physicists: Felix Marti Peter Miller Xiaoyu Wu

SC Magnet Technology:

Mechanical Engineers: Ben Arend Patrick Glennon Jim Moskalik Jack Ottarson

Electronic and RF Engineers: Kelly Davidson Bill Nurnberger John Vincent

Jon DeKamp Al Zeller Many thanks for the help with material for some of the slides:

Santo Gammino

Daniela Leitner

Takahide Nakagawa

RIKEN