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Abstract 
 
   The computation of the bunching system of intense ion 
beam based on the moments method is presented. 
 

INTRODUCTION 
 
   Within the framework of the Multi-Component Ion 
Beam code (MCIB04) [1] the program for 3D simulation 
of the intense charge particle beam dynamics is created. 
   Fast analysis and study of the averaged beam 
characteristics, such as root-mean-square (RMS) 
dimensions, is performed by the moments method [2].  
   The main advantage of the moments method in 
comparison with macro particle one is fast calculation and 
therefore applicability for transport line optimization.  
   The model describing the charge density of the bunched 
beam is introduced. The external electromagnetic fields 
are assumed to be linear. 
   The fitting procedure based on minimization of a 
quadratic functional at any point of the beam line by using 
either gradient or simplex-method is available [3]. 
   The simulation of the bunching system of DC-350 
cyclotron axial injection beam-line [4] was fulfilled by 
using created 3D version of MCIB04 code. 
 

BEAM MODEL 
 

   Let consider the train of bunches (Fig.1), moving with 
average velocity c0β  with distance between its center-of-
mass 00λβλ = . Here 0λ  is cyclotron RF field wave 
length. 
 

 
 

Figure 1. 
 
   The beam density may be defined as: 
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λ=  – the number of particle at spatial 

period λ , I – beam current, Ze – ion charge.  
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Longitudinal //ρ and transverse densities ⊥ρ are equal to: 
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   According to formula (2.1) longitudinal density is 
periodical function )()( //// λρρ += zz  with a constant 
number of particles at period λ : 
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   In the case σz ≳ λ this model describes the beam with 
constant density and for σz << λ gives Gaussian beam. 
The dependencies on z of the longitudinal beam density 
for various values of ratio zσλ /  are shown in Fig.2. 
 

-0.5 -0.25 0 0.25 0.5
z / λ

0
1
2
3
4

n 
/ n

0

1

2

3

 
 

Figure 2: Longitudinal beam density 
Curve 1 – zσλ / = 1, 2 – zσλ / = 4, 3 – zσλ / = 8 

 
BEAM SELF FIELD 

 
   By using formulae (1, 2) the beam self field may be 
represent in the following form [5]: 
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Here )(2 22
yxa σσ +=  – RMS radius of the beam, b – 

vacuum pipe radius and prime denotes derivative with 
respect to z. 
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MOMENTS EQUATIONS 
 
   Let us define the second order moments M of the beam 
distribution function f: 

   ∫== dyfYY
N

YYM TT 1      (5) 

where superscript T denotes transpose vector or matrix, 
),(),,(),,,,,( ////0

TTTTTT YYYVXctzyxyxY ⊥==−′′= δβ  – 
vector of phase space coordinates of the particle, 

00 /)( βββδ −=  – relative momentum spread. Integration 
in (4) is fulfilled over all phase space occupied by bunch 
particles (at one spatial period), prime denotes derivative 
with respect to longitudinal coordinate of the bunch 
center-of-mass. 
   The equations for transverse second order moments 

TYYM ⊥⊥⊥ = do not differ significantly in comparison with 
the case of non-bunched beam [2]. This difference leads 
to replacement of the beam current I by its effective value 
k⊥I, where the bunching factor k⊥ is connected with 
changing of the transverse beam self fields due to 
changing of the longitudinal density: 
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Here 2z  is longitudinal RMS dimension of the bunch: 

     ∫
−

=
2/

2/
//

22 )(
λ

λ

ρ dzzzz      (9) 

and 3/2
0 λ=z  its value for non-bunched beam. The 

plot of function )(xF⊥  is shown in Fig.3. 
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Figure 3. Figure 4. 

 
   As may be seen from Fig.3 function )(xF⊥  is 
approximately equal to unity with difference does not 
greater than 6%. In the program this function is 
represented as the sixth order polynomial. 
   The equations for the longitudinal second order 
moments M// has the following form: 
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Computation of average zzE  in accordance with formulae 
(4, 5) results in: 
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where А – ion mass, IA = mc3/e – Alfven’s current, the 
bunching factor of the longitudinal motion k// is defined 
by formula: 
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   The plot of function )(// xF  is shown in Fig.4. In the 
case x ∼ 1 function F// is close to zero because of the 
longitudinal electric field of non-bunched beam is equal to 
zero. For the well bunched beam(x << 1) due to small 
longitudinal density at point z = λ/2 formulae (11) and 
(12) become identical and function F// is close to unity. In 
the program function )(// xF  is approximated by the fifth 
order polynomial for all values of x. 
 

BUNCHING SYSTEM COMPUTATION 
 

The simulation of the bunching system of the DC350 
cyclotron axial injection beam-line [4] was fulfilled by 
using created 3D version of MCIB04 code [6]. 

The bunching system consists of linear and sinusoidal 
bunchers. The linear buncher is placed at 275 cm and 
sinusoidal – at 80 cm from median plane of the cyclotron. 
The parameters of the beam are contained in Table. 1. 

 
Table 1: 48Ca beam initial parameters 

 
Injected beam 48Ca6+ 

Mass, A 48 
Charge, Z 2÷8 

Injected current, µA 0÷190 
Ca beam current, µA 0÷700 
He beam current, µA 200 

48Ca6+ kinetic energy, keV/u 3.1375 
Diametr, mm 8 

Emittance, π mm×mrad 142 
 
The initial conditions for the moments were defined at 

the entrance of the linear buncher and were found by 
macro-particle simulation. Charge state distribution for 
ion beam and its self fields were taken into account in this 
simulation.  

The beam focusing is provided by two solenoids. The 
longitudinal magnetic field of the cyclotron is considered 
also. 
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   In the simulation all bunchers were replaced by 
infinitesimal width gap with variable voltage. The 
dependencies on longitudinal coordinate z (or time) of 
voltages for two type bunchers have the following form: 
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The influence of the bunchers leads to the sudden change 
of the longitudinal moment δz and momentum spread at 
the place of bunchers location: 
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Here subscript “0” denotes the values of the moments at 
the bunchers entrance. Besides the longitudinal emittance 
ε// increases at the buncher: 
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In accordance with Cauchy-Schwarz inequality magnitude 
222 )(zUUz −  is not negative and is equal to zero in the 

case of linear buncher. Thereby nonlinearity of the 
buncher voltage leads to the growth of the longitudinal 
emittance and minimal achievable beam RMS dimension. 

The matching condition at the entrance of the spiral 
inflector corresponds to the steady state of the beam 
(without envelopes oscillation) in the uniform magnetic 
field with magnitude to be equal to the field in the 
cyclotron center. The amplitude of the voltage at linear 
buncher was found to provide the equality k⊥ = 2 at the 
entrance of sinusoidal buncher. The amplitude of voltage 
at sinusoidal buncher corresponds to minimum 
longitudinal beam RMS dimension. 

The beam envelopes near spiral inflector of the 
cyclotron are shown in Fig.5. The voltages at the bunchers 
for various 48Ca6+ beam current are shown in Fig.6. 
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Figure 5: Aperture (A), horizontal 
(H) and vertical (V) 48Ca6+ beam 
envelopes near inflector. 

 
Figure 6: Buncher 
voltage for various 
48Ca6+ beam current 

 
   Let define the bunching efficiency as ratio of the 
number of particles within RF phase interval 015≤∆ϕ  to 
non-bunched beam one. This quantity shows the possible 

increasing of the number of particle captured into 
acceleration in the cyclotron due to the bunching system. 
   The dependencies of the bunching efficiency on 
distance along the beam line for various 48Ca6+ beam 
current are I shown in Fig.7. 
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Figure 7: Bunching efficiency along distance.  
Beam current in µA. 

 
The dependence of the bunching efficiency on the 48Ca6+ 
beam current at the exit of the system is shown in Fig.8. 
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Figure 8: Bunching efficiency versus beam current 
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