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Abstract
Scaling laws of the emittance growth for a beam crossing

the 6th-order systematic space-charge resonances and the
random-octupole driven 4th-order resonance are obtained
by numerical multi-particle simulations. These laws can
be important in setting the minimum acceleration rate and
maximum tolerable resonance strength for the design of
non-scaling fixed-field alternating gradient accelerators.

INTRODUCTION

Recently, fixed-field alternating gradient accelerator
(FFAG) [1] has been considered as a favorable candidate
for proton drivers, because it has the merit of constant
guide field so that the repetition rate can be made consider-
ably higher than conventional synchrotrons, even up to the
kHzs. This is especially true for the non-scaling design [2],
where the magnetic fields are linear and the magnet aper-
ture need not be too large. However, the non-scaling design
has the disadvantage that the betatron tunes are left to vary
as the beam energy increases. Take for example, the three
concentric FFAGs suggested by Ruggiero [3] to replace the
Brookhaven AGS so as to reach a final beam power of more
than 10 MW. Although the beam closed orbit of each FFAG
has a radial excursion of less than 18 cm during the acceler-
ation cycle, the betatron tunes vary from νx,z = 40.0/38.1
to 19.1/9.3. As shown in Fig. 1, both the systematic 4th
and 6th-order resonances mνx + nνz = P (|m|+ |n| = 4
or 6 and P =136 is the lattice periodicity) are crossed and
the beam quality can become an important issue depending
on the tune-ramp rate. The latter is approximately given by
Δνx,z/Δn ∼ −(1−D/R)(νx,z/2β2E)(ΔE/Δn), which
is typically ∼ −10−3 to −10−2, where D/R is the ratio of
dispersion function to the ring’s radius and ΔE/Δn is the
energy gain per revolution.
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Figure 1: (Color) Tune
diagram of Ruggiero’s
proposed FFAGs, show-
ing the crossing of
the systematic 4th and
6th-order resonances in
a ramp cycle (arrowed
curve).

Recently, Lee et al. pointed out that the crossing of
space-charge driven systematic nonlinear resonances may
cause substantial emittance growth [4]. He demonstrated a
simple scaling property for the emittance growth across the
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4th-order space-charge resonance. They show that random-
error driven parametric linear and nonlinear resonances
may also lead to emittance growth depending on how fast
these resonances are crossed. The purpose of this paper
is to continue the investigation of the systematic 6th-order
resonances as well as the parametric 4th-order resonances,
hoping to obtain the minimum resonance crossing rates so
that emittance growth remains tolerable. A detailed ac-
count of this work is given in Ref. [5].

THE MODEL
Multi-particle simulations are performed on a lattice

similar to that of the Fermilab Booster, which consists of
P = 24 superperiod FODO-cells. The betatron functions
are βx,z = 40/8.3 m and 6.3/21.4 m, respectively, at the
centers of the F- and D-magnet sets. Four-by-four trans-
fer matrices are employed for each half period. The trans-
verse distribution is assumed to be bi-Gaussian all the time.
Although not self-consistent, the assumption simplifies the
space-charge force and speeds up the simulations tremen-
dously. At the end of each turn, the transverse rms beam
radii σx,z and the position of the beam center are computed,
and the rms emittances are inferred. These informations are
used to determine the space-charge force to be applied at
each F- and D-magnet set in the succeeding turn. This pro-
cedure smoothes out the computational noise in one turn, so
that the number of macro-particles in the simulation, usu-
ally 2000, need not be too large.

Since the emittance usually grows much faster than a
synchrotron oscillation, the performance of only 2D simu-
lation for a slice of the beam at the longitudinal bunch cen-
ter is justified. For a beam with peak linear particle density
λb, the transverse 2D space-charge potential is
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where Ksc =2λbr0/(β2γ3) is the space-charge perveance,
with r0 being the particle classical radius and β and γ the
relativistic parameters. Each beam particle passing through
a magnet set experiences a horizontal space-charge kick

Δx′=−∂Vsc
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and a similar vertical kick, where � = πR/P . Here an ef-
fective space-charge force is chosen instead, because direct
derivatives of the above analytic expression is cumbersome
as an apparent singularity is present whenever σx = σz .
This effective space-charge force reproduces exactly the
linear and quadrupole parts in the round-beam geometry,
and rolls off far away from the beam center. Unfortunately,
this effective force is not derivable from a potential. For
this reason resonances that involve the mixing of the hori-
zontal and vertical phase spaces are not addressed here.
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SYSTEMATIC 6TH-ORDER RESONANCE
The beam is injected first for 100 turns at 2×1011 protons

per turn into 84 consecutive buckets with bunching factor
B=0.25 and initial equal transverse normalized rms emit-
tances εN,rms = 8.33 πmm-mr. The kinetic energy is kept
constant at 1 GeV, while the betatron bare tunes initially at
νx0,z0 =4.25/4.30 are allowed to ramp according to some
specific rate. The emittances at the end are computed and
are divided by the initial to arrive at the emittance growth
factors (EGFs). In order to minimize all other influence
to the space-charge driven systematic resonances, random
field errors and nonlinear fields in the magnets are turned
off. Momentum width consideration is also excluded.

The terms in the space-charge potential, responsi-
ble for the 6th-order resonances can be expressed in
terms of action-angle variables (Jx,z, ψx,z): RVsc ≈
−∑

�[|G60�|J3
x cos(6ψx−�θ+χ60�)+ |G06�|J3

z cos(6ψz−
�θ+χ06�) + · · · ], where � is an integer, |Gmn�| and χmn�

are the amplitude and phase of the resonance strength. For
simulation with equal horizontal and vertical emittances
to start with, the space-charge contribution to the reso-
nance strength can be factored out leaving behind the lat-
tice dependent dimensionless reduced resonance strength
gmn� =4Gmn�ε

3
rms/R, with εrms being the unnormalized

rms emittance. Here, KscR/(4εrms) is just the linear
Laslett space-charge tune shift for a round-beam geometry.

Figure 2 shows a sample tracking with 100-turn injec-
tion and tune-ramp rate −0.004 per turn. The space-charge
tune shifts after injection are Δνsc,x,z = 0.309/0.290.
The systematic resonances 6νx0,z0 = P (P = 24, the lat-
tice periodicity) are crossed at turns 950 and 825, respec-
tively, with reduced resonance strengths |g60P |/|g60P | =
0.00618/0.00463. Both the horizontal and vertical emit-
tances start to grow ∼ 150 turns earlier. The beam size
increases and the space-charge tune shifts are reduced. The
right plots show the particle distribution in the vertical (bot-
tom) and horizontal (top) phase spaces at turn 900. Six is-
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Figure 2: (Color) Top-left: After 100-turn injection, bare tunes
are ramped downwards at −0.004 per turn. Systematic reso-
nances 6νx0,z0 =P are crossed at turns 950 and 825, respectively.
Bottom-left: Emittance growths are observed. Right: Horizontal
and vertical phase-space distributions at turn 900.
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Figure 3: (Color) Emittance growth factor across the 6th-order
systematic resonance 6νx0 = P versus tune-ramp rate for various
resonance strengths |g60P | at 100-turn injection.

lands are clearly seen in the bottom plot slightly ahead of
turn 950 when 6νz0 = P is crossed, and particles pushed
outwards forming an outside ring encircling the inside core
are seen in top plot just after crossing 6νx0 =P .

The simulations are repeated with tune-ramp rate in-
creasing gradually from −dνx0,z0/dn = 0.0004 to 0.001.
For each tune-ramp rate, the resonance strengths are also
varied by assigning different values of betatron functions
at the space-charge kicks. The results for 100-turn injec-
tion with EGF versus tune-ramp rate are depicted in Fig. 3
as log-log plots. When the EGF is slightly larger than unity,
linear relations are evident, implying a scaling power law
EGF = (−dν/dn)−a, where a = 0.53 to 0.23 depend-
ing on the resonance strength and the space-charge tune
shift. The critical tune-ramp rate is obtained when this lin-
ear relationship is extended to intercept the ramp rate axis
at EGF = 1. We note that at the critical tune-ramp rate,
EGF�1.2. If this EGF is tolerable, the critical tune-ramp
rate becomes the required minimum rate to cross the reso-
nance. The critical tune-ramp rate is now plotted against
the resonance strength in Fig. 4 for both resonances at
6νx0,z0 =P . These plots provide a guide for the design of
FFAGs in order to avoid excessive emittance growths when
systematic 6th-order resonances are crossed. The linear fits
need not be in contradiction to similar plots in Ref. [4] for
crossing the systematic 4th-order resonance, because the
resonance strengths studied here are less than 1/6 of the
maximum 4th-order strengths there.
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Figure 4: (Color) Critical tune-ramp rate across the systematic
6th-order resonances versus reduced resonance strength |g60P | or
|g06P | for various linear space-charge tune shifts or bunch inten-
sities. Dashed and solid lines are linear fits to the data.

4TH-ORDER PARAMETRIC RESONANCE
Octupoles, present either as field errors or as tune-spread

provider to Landau damp unwanted transverse instabilities,
break the lattice periodicity. To mimic the effects, a single
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octupole is added at the D-magnet of the last period of the
ring; thus only the resonance 4νz0 =� will be studied here.

The potential of the octupole field is V4(x, z) =

− B
′′′

4!Bρ

(

x4−6x2z2
)

, where Bρ is the beam rigidity. The
terms responsible for the 4th-order resonance can be ex-
pressed as RV4 ≈ −∑

�[|G40�|J2
x cos(4ψx−�θ+χ40�) +

|G04�|J2
z cos(4ψz − �θ+χ04�) + · · · ], where |Gmn�| and

χmn� are the amplitude and phase of the resonance
strength, which can be made dimensionless by introducing
gmn� = Gmn�εrms. Across a thin octupole of length �, the
changes in horizontal and vertical divergences are given by
Δx′ = 1

6S4(x3−3xz2) and Δz′ = 1
6S4(z3−3x2z), where

S4 =B
′′′

�/Bρ is the octupole strength. For a 1-GeV beam,
S4 =50 m−3 corresponds to an octupole with pole-tip field
of 0.035 T at radius 5 cm and length �=1 m.

Figure 5 shows a sample tracking with 70-turn injection
of 4×1011 each at bunching factor B=0.25 and bare tunes
νx0,z0 = 6.95/6.80, which are then ramped downwards at
0.0005 per turn. The left plots show both the bare (dashes)
and space-charge depressed (thick dots) tunes, and the
emittance evolution at the octupole strength S4 =20 m−3.
Vertical emittance grows near the 4νz0 = 27 resonance
at turn 300, which is verified by the vertical phase space
plot at turn 270 (top-right). We also see the sum resonance
2νx0 +2νz0 = 27 at turn 450 and half-integer resonance
2νz0 = 13 at turn 800; the latter is verified by the verti-
cal phase space plot at turn 780 (bottom-right). Next come
another sum resonance 2νx0+2νz0 =26 at turn 950 and an-
other half-integer resonance 2νx0 =13 at turn 1100. Unlike
the systematic resonances studied above, except for the one
at 4νz0= 27, there has been severe beam loss when cross-
ing all other resonances. This explains why the octupole
strength has been very much limited in this study.

The EGF crossing the resonance 4νz0 = 27 is com-
puted for various ranges of the three parameters: resonance
strength, tune-ramp rate, and space-charge tune shifts. A
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Figure 5: (Color) After 70-turn injection of 4×1011 per turn,
bare tunes are ramped downwards at 0.0005 per turn (top-left).
Emittance growths are seen (bottom-left) while crossing various
parametric resonances, usually accompanied by beam loss. Right:
vertical phase-space distributions at turns 270 (top) and 780 (bot-
tom), demonstrating the crossing of 4νz0 = 27 and 2νz0 = 13.
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Figure 6: (Color) EGF across octupole driven resonance 4νx0 =
27 versus tune-ramp rate for various octupole strengths after 70-
turn injection. Linear relationships are evident.

sample result is shown as log-log plots in Fig. 6. Here,
power scaling laws are again evident with the power index
a varying from −0.35 to −0.65, not by so much as the 6th-
order systematic resonance. These linear relationships are
extended to intercept the −dνz/dn-axis to arrive at the crit-
ical tune-ramp rates. In general at these critical tune-ramp
rates, EFG is � 1.3. The results are shown in Fig 7, which
provides some guidelines for the design of FFAGs. Again
linear fits are possible within the error bars.
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Figure 7: (Color) Critical tune-ramp rate across the octupole
driven resonance 4νz0 = 27 versus reduced resonance strength
|g04�| for various bunch intensities.

CONCLUSIONS
Power scaling laws are obtained between the EGF and

tune-ramp rate for crossing the space-charge driven sys-
tematic 6th-order resonances 6νx0,z0 = P as well as the
octupole driven parametric 4th-order resonance 4ν z0 = �.
When the resonance strengths are given, they can serve as
an estimate to the minimum rate of crossing these reso-
nances in order that the EGF remains tolerable.

The effective space-charge force employed in this inves-
tigation is not derivable from a potential. This limits our
study concerning the crossing of sum resonances where
both transverse spaces are coupled. We are currently work-
ing on a better approximation of the space-charge force.
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