
OPC UNIFIED ARCHITECTURE WITHIN THE CONTROL SYSTEM OF
THE ATLAS EXPERIMENT

Piotr Nikiel, Ben Farnham, Sebastien Franz, Stefan Schlenker, CERN, Geneva, Switzerland
Henk Boterenbrood, NIKHEF, Amsterdam, The Netherlands

Viatcheslav Filimonov, PNPI, Gatchina, Leningrad District, Russia

Abstract
The Detector Control System (DCS) of the ATLAS ex-

periment at the LHC has been using the OPC DA stan-
dard as an interface for controlling various standard and
custom hardware components and their integration into the
SCADA layer. Due to its platform restrictions and expir-
ing long-term support, OPC DA will be replaced by the
succeeding OPC Unified Architecture (UA) standard. OPC
UA offers powerful object-oriented information modelling
capabilities, platform independence, secure communica-
tion and allows server embedding into custom electron-
ics. We present an OPC UA server implementation for
CANopen devices which is used in the ATLAS DCS to
control dedicated IO boards distributed within and outside
the detector. Architecture and server configuration aspects
are detailed and the server performance is evaluated and
compared with the previous OPC DA server. Furthermore,
based on the experience with the first server implementa-
tion, OPC UA is evaluated as standard middleware solution
for future use in the ATLAS DCS and beyond.

OPC DA USE IN THE ATLAS DCS
The ATLAS DCS has been using OPC DA (OPC Data

Access) since initial implementation of the DCS [1]. The
OPC DA protocol has been used to provide:

• communication between the SCADA layer and the
CANopen [2] OPC DA server (which would later on
communicate through CAN bus with numerous (more
than 5000) IO nodes called ELMB (Embedded Local
Monitoring Boards [1]) using the CANopen protocol

• communication between the SCADA layer and var-
ious types of commercially available, off-the-shelf
equipment (e.g. industrial power supplies sold by
WIENER Plein&Baus GmbH, ISEG and CAEN com-
panies)

The OPC DA is approaching obsolescence with dwin-
dling development activity and decreasing level of support.
The fact that OPC DA is based on MS Windows proprietary
technology (i.e. COM/DCOM [3] ) is considered one of
the biggest obstacles in modernisation of the ATLAS DCS.
Furthermore, this reduction in active development on the
OPC-DA stack and OPC-DA toolkits impedes its evolution
to adapt to industry trends such as multi-core processing
etc.

Therefore both its scalability and performance lags be-
hind what could be obtained using the same hardware.

OPC UA IN THE DCS:
MOTIVATION AND APPLICATIONS

Natural update from OPC DA
Many of the unfavourable properties of OPC DA have

been addressed and improved in OPC UA[4]. Therefore a
migration to OPC UA is a natural modernisation path.

Benefits of OPC UA for the DCS
In addition to modernising a system, OPC UA brings

many qualities that the ATLAS DCS middleware will be
able to profit from:

• independence from operating system. OPC UA Ref-
erence Stack (providing lower layers of OPC UA in-
ternally to OPC UA toolkits) is delivered in stan-
dard C. OPC UA toolkits (which de facto provide OPC
UA connectivity in OPC UA servers) are delivered in
many programming languages (standard C++, Java,
.NET, Python and other [5]). Moreover ubiquitous
TCP/IP is communication technology used by OPC
UA, so there’s full portability of OPC UA to any mod-
ern network aware operating system one may think of.

• robust data modelling capabilities – with OPC UA
structured information can be stored in bespoke
datatypes. These structures are created using complex
data types that may involve object-oriented techniques
including type hierarchies and inheritance [6]. More-
over type information is fully exposed to the client and
may be accessed like type instances [6].

• enabling OPC UA connectivity directly to custom
hardware – thanks to dependence only on standard
C and C++, some common cryptography functions
and TCP/IP stack, one can run OPC UA servers on
any (even resource constrained) embedded computer
that has enough memory and TCP/IP connectivity. A
number of successful miniaturised and embedded con-
trollers with OPC UA servers are already on the mar-
ket.

• thanks to PKI (Public Key Infrastructure) support in
OPC UA, one can use state-of-the-art security in OPC
UA based control infrastructure. Potentially a suc-
cessful attack on SCADA system could cause loss of
data and may damage both hardware and reputation.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC032

Integrating Complex or Diverse Systems

ISBN 978-3-95450-139-7

143 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Applications of OPC UA in the DCS
OPC UA components used in the ATLAS DCS are:

• the OPC UA CANopen server (presented in detail be-
low),

• the SCADA layer OPC UA client (standard compo-
nent of WinCC OA SCADA system)

• custom OPC UA clients (for maintenance and debug)

• the UaExpert software from Unified Automation (for
maintenance and debug)

• OPC UA as the DCS-wide communication technology
(planned)

THE OPC UA CANOPEN SERVER
Typical Use Case of the OPC UA CANopen
Server

In the most common case the server would be a link be-
tween SCADA system (by OPC UA interface) and one or
many hardware devices on (possibly multiple) CAN buses
communicating using the CANopen protocol. Such a typi-
cal arrangement is presented in Figure 1.

Requirements
Principal design decisions were made before develop-

ment of the server was started. The following requirements
were identified:

• portability (Linux and MS Windows compatibility)

• performance (at least 10 thousand readout values pro-
cessed per second with CPU load less than 50%)

• independence of hardware interfaces (plug-in support
is required for various CAN bus gateway hardware
provided by various vendors.)

• conformance with the CANopen standard

• flexible configuration

• use of all of OPC UA core advantages

Architecture
Figure 2 shows software components of the server and

data flow among them. The salient points are:

• The configuration module parses XML configuration
file and sets up the AddressSpace accordingly. At
setup time the module establishes bindings of items
of the AddressSpace with particular objects from the
CANopen object dictionary.

• The AddressSpace stores data (e.g. most up to date
value of given readout channel) and metadata (e.g.
type of a given readout channel is double-precision
floating point and it is read-only).

• The NodeManager handles node management: Node-
Guard protocol (which periodically checks connectiv-
ity and state of configured CANopen nodes), Sync
protocol (which requests updates of measurement),
start/stop/reset requests.

• CANopen interface module composes transmit mes-
sages in the CANopen frame format and decomposes
received messages from the CANopen frame format.

• CAN Interface modules communicate via hardware
components.

• Hardware components are plug-ins for various types
of CAN hardware interfaces.

Configuration System
The configuration system of the server:

• can handle any CANopen object dictionary

• bases on XML (eXtensible Markup Language) and
XSD (XML Schema Definition) industry technologies

• the part responsible for AddressSpace setup may be
reused in any further OPC UA server project

• uses automatic XML Schema Definition to C++ code
generation, which ensures coherency and minimises
coding effort

OPC UA Toolkit Selection
We evaluated two C++ OPC UA Toolkits: Softing OPC

UA Toolkit and Unified Automation OPC UA Toolkit. At
the time of evaluation Unified Automation’s toolkit was
chosen because it offered more complete implementation
of OPC UA Standard and because its source code was avail-
able.

PERFORMANCE MEASUREMENTS
It was essential to verify performance of our OPC UA

based readout chain and identify bottlenecks. The measure-
ments were done in almost full production environment,
the only difference was that data updates were not coming
from real CANopen devices but generated by software in
realtime with controlled throughput. We took CPU load at
given throughput as a figure of merit.

The following conclusions were drawn from the mea-
surements:

• the server itself satisfied performance requirements
(about 20% measured CPU load for 10k updates per
second).

• we couldn’t observe any performance bottlenecks of
the server itself. It scaled beyond one CPU.

• our subscription client used very little CPU process-
ing power (about 5% for 10k updates per second) and
at least few times less than the production client. It

MOPPC032 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

144C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Integrating Complex or Diverse Systems



Fi
el
d  

CANopen  Device  
node_id=k  

CANopen  Device  
node_id=2  

ELMB  
node_id=n  

ELMB  
node_id=2  

ELMB  
node_id=1  

Re
ad
ou

t  P
la
tfo

rm
  

SCADA  
WinCC  OA  

  

CAN  Hardware  
Interface  Type  X  

CAN  Hardware  
Interface  Type  Y  

CANopen  Device  
node_id=1  

CAN  Hardware  
Interface  Type  Z  

OPC  UA  CANopen  Server  
  
  

Standalone    
OPC  UA  Client  

WinCC  OA  
OPC  UA  Client  

Component-­‐Specific  
Messages  via  e.g.  
USB,  Ethernet,  PCIe  

CANopen  Messages  
via  CAN  Bus  

OS  Function  Calls  

OPC  UA  Protocol  via  
TCP/IP  

ELMB  
node_id=n  

ELMB  
node_id=2  

ELMB  
node_id=1  

Distributed  
SCADA  

CAN  Driver  Type  X   CAN  Driver  Type  Y   CAN  Driver  Type  Z  

HW  Component  
Type  X  

HW  Component  
Type  Y  

HW  Component  
Type  Z  

Figure 1: A schematics showing typical use case of OPC UA in the ATLAS DCS.

proves that the CPU power observed on the production
client is spent on interfacing the SCADA layer itself
rather than on handling OPC UA communication.

• we observed performance bottlenecks in the produc-
tion client. First performance bottleneck was visible
at update rate of around 40k updates per second when
single production client reached 100% CPU consump-
tion and buffered excess traffic instead of processing
it. We then split OPC UA data items equally among
3 production clients instead of one. That helped us to
push performance limit up to about 120k updates per
second when again all three clients reached combined
300% CPU consumption. Both limits are far above
the requirements though.

ONGOING DEVELOPMENT WORK
Further expansion of OPC UA use in the ATLAS DCS is

being currently evaluated.

OPC UA as a Common Middleware Communica-
tion Protocol

Currently the most common middleware communication
protocol in the DCS is the DIM protocol [7]. OPC UA
could be considered an alternative to the DIM protocol
bringing software components unification, better mod-
elling capabilities and security. Moreover configuration
of all unified systems OPC UA servers could be stored as
XML files. The configuration component of the server
(described in the paper) could be reused to generate OPC

UA AddressSpace from XML config files of common
format.

The next step in unification is implementation of OPC
UA servers embedded in numerous FPGA-based electronic
modules used in the ATLAS. Nowadays they use custom
protocols to communicate with the DCS. Contradictory
preferences are identified:

• FPGA-based modules favour simple protocols, be-
cause these modules are optimised for extremely high-
throughput processing rather than for elaborate logic
(and implementing an advanced soft core CPU may
not be possible)

• the DCS favours advanced protocols (like OPC UA)
which supports rich address space, high reliability, se-
curity and availability of adapters for communication
with the SCADA layer

Since reliability, security and smooth integration with the
SCADA layer are of priority, the efforts of OPC UA inte-
gration in the modules are ongoing.

CONCLUSIONS
OPC UA passed both functional and performance tests

in the ATLAS DCS. It has already replaced OPC DA tech-
nology in the ELMB-based parts of the DCS. Thanks to its
features (especially versatility, portability, standards com-
pliance, SCADA connectivity and security) it may become
the dominant communication technology of the DCS.

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC032

Integrating Complex or Diverse Systems

ISBN 978-3-95450-139-7

145 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



O
PC UA Server 

ELM
B Firm

w
are 

CAN 
Interface 

HW 
Component 

 
OPC UA 
Address 
Space 

O
PC UA Client 

Node 
Manager 

PDO
, SDO

 
data update 

read/write data items 

SD
O

 re
qu

es
t, 

PD
O

, N
M

T,
 

Sy
nc

, N
od

eg
ua

rd
 m

es
sa

ge
s 

notifications 

Configuration 

Address Space 
Interface 

CANopen 
Interface 

OPC UA 
Dispatcher 

Figure 2: Software components of the server and data flow among them. CANopen specific terms like SDO, PDO, NMT
are described in [2].

Sheet5

Page 1

0
20000

40000
60000

80000
100000

120000
140000

160000
180000

0

50

100

150

200

250

300

350

CPU Load basing on simulated channel update rate

OPC Server CPU

1 WinCC OA Client

SubscriptionClient

3 WinCC OA 
Clients (CPU Load 
combined)

Updates / second

C
P

U
 L

O
A

D
[%

]

Figure 3: CPU load of OPC UA software components vs few update rate values.

REFERENCES
[1] A. Barriuso Poy, H. Boterenbrood, H. J. Burckhart, J. Cook,

V. Filimonov, S. Franz, O. Gutzwiller, B. Hallgren, V. Kho-
mutnikov, S. Schlenker, F. Varela. “The detector control sys-
tem of the ATLAS experiment”, Journal of Instrumenta-
tion, Vol. 3, May 2008, doi:10.1088/1748-0221/3/05/
P05006

[2] CAN-in-Automation, CAL, CAN Application Layer for In-
dustrial Applications, CiA Draft Standard DS-201 to DS-207,
Version 1.1, Feb 1996

[3] Microsoft Corporation, The Component Object Model Spec-
ification, http://www.microsoft.com/Com/resources/
comdocs.asp (1995)

[4] W. Mahnke, S.H. Leitner, ”OPC Unified Architecture - The
future standard for communication and information modeling
in automation”, 3/2009 ABB Review 3/2009, page 56-61

[5] Unified Automation website,
http://www.unified-automation.com, access 16th Sep
2013

[6] W. Mahnke, S.H. Leitner, M. Damm, “OPC Unified Ar-
chitecture”, ISBN 978-3-540-68898-3, 2009 Springer-Verlag
Berlin Heidelberg

[7] C. Gaspar, M. Donszelmann, Ph. Charpentier, “DIM, a
Portable, Light Weight Package for Information Publishing,
Data Transfer and Inter-process Communication”

MOPPC032 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

146C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Integrating Complex or Diverse Systems


