A New Possibility of Low-Z Gas Stripper for High-Power Uranium Beam Acceleration as Alternative to C Foil

Hiroki Okuno, Nobuhisa Fukunishi, Akira Goto, Hiroo Hasebe, Hiroshi Imao, Osamu Kamigaito, Masayuki Kase, Hironori Kuboki, Yasushige Yano
(RIKEN Nishina Center, Wako)
Ady Hershcovitch
(BNL, Upton, Long Island, New York),
Preview of the Talk

Introduction to RIBF

Upgrade programs to increase beam intensity of U ion

R&D works for charge stripper problem (C-foil on rotating cylinder and Gas (N₂))

Low-Z gas stripper
Introduction RIKEN RI Beam Factory (RIBF)

The Old Facility (1975~1990)

RIBF (1997~2012)

BigRIPS (Fragment Separator)
Introduction RIKEN RI Beam Factory (RIBF)

The Old Facility (1975~1990)

RIBF (1997~2012)

The Chair of HB2010 with SRC
History of RIBF

1997: Construction started.

2003 March: The building for the accelerator was completed. Installation was started.

2005 Nov.: Successful Excitation of the superconducting sector magnets for SRC

2006 28th Dec: The first beam from SRC

Beam Intensities achieved so far (Goal 1 pμA)

- pol-d(250 MeV/u): 120 pnA: May2009 Mode 3
- \(^4\)He(320 MeV/u): 1000 pnA: Oct2009 Mode 1
- \(^{14}\)N(250 MeV/u): 80 pnA: May2009 Mode 3
- \(^{18}\)O(345 MeV/u): 1000 pnA: June2010 Mode 1
- \(^{48}\)Ca(345 MeV/u): 230 pnA: May 2010 Mode 1
- \(^{86}\)Kr(345 MeV/u): 30 pnA(<1min): Nov2007 Mode 1
- \(^{238}\)U(345 MeV/u): 0.8 pnA: Dec2009 Mode 2
Key issues to increase the intensity of U beam

- **Increase the beam intensity from the ion source**
 - New 28 GHz Superconducting ECR ion source
 - Goal intensity of U\(^{35+}\) >15 \(\mu A\) (1\(\mu A\) @ SRC)
 - Developments for U beam are in progress.

- **Improve transmission efficiency**
 - New injector (Efficient acceleration in the low energy region)
 - Avoid the emittance growth due to the space charge.

- **Make charge strippers with long lifetimes**
 - The 1\(^{st}\) stripper is critical.
 - Max. lifetime \(~12\) hrs @1000enA after RRC
 - R&D programs : Rotating, Gas
New 28 GHz Superconducting ECR ion source (Nakagawa et. al.)

Design:
- Flat B_{min} configuration
- Large plasma volume: 1100 cm^3

Construction:
- Started in Oct. 2007
- Successfully excited to the designed field in October 2008.

Developments for U beam (18 GHz mode):
- Dec. 2008 : Installation
- April 2009-- : Start
- Nov. 2009 : U$^{35+}$ 10 euA (~5 times)

Move to the upstream of the New Injector:
- Finished (Summer 2010)

Upgrade to 28 GHz
- In progress (Autumn 2010).
New 28 GHz Superconducting ECR ion source (Nakagawa et. al.)

Design:
Flat B_{min} configuration
Large plasma volume: 1100 cm^3

Construction:
started in Oct. 2007
Successfully excited to the designed field in October 2008.

Developments for U beam (18 GHz mode):
Dec. 2008 : Installation
April 2009-- : Start
Nov. 2009 : U^{35+} 10 euA (~5 times)

Move to the upstream of the New Injector:
Finished (Summer 2010)

Upgrade to 28 GHz
in progress (Autumn 2010).
Key issues to increase the intensity of U beam

• Increase the beam intensity from the ion source
 – New 28GHz Superconducting ECR ion source
 – Goal intensity of U$^{35+} > 15$ pμ A (1 pμA @ SRC)
 – Developments for U beam are in progress.

• Improve transmission efficiency
 – New injector (Efficient acceleration in the low energy region)
 – Avoid the emittance growth due to the space charge forces.

• Make charge strippers with long lifetimes
 – The 1st stripper is critical.
 – Max. lifetime ~12 hrs @1000enA after RRC
 – R&D programs (2008~): Rotating, Gas
New Injector for RRC
$M/q=7,\ 680\ keV/u$

Fabrication of the main components was completed in FY2009.
New Injector (RILAC2) in the AVF room

Beam commissioning will start from Dec. 2010!
Key issues to increase the intensity of U beam

• Increase the beam intensity from the ion source
 – New 28GHz Superconducting ECR ion source
 – Goal intensity of U^{35+} >15 \mu A (1\mu A @ SRC)
 – Developments for U beam are in progress.

• Improve transmission efficiency
 – New injector (Efficient acceleration in the low energy region)
 – Avoid the emittance growth due to the space charge.

• Make charge strippers with long lifetimes
 – The 1^{st} stripper is critical.
 – Max. lifetime ~12 hrs @1000enA after RRC
 – R&D programs (2008~): Rotating, Gas
Charge strippers in Uranium Acceleration

The 1st stripper: Commercially available C-foils are usually used.

\begin{itemize}
 \item \textbf{Lifetime:} 12 hours (1.4 e\mu A)
\end{itemize}

The present intensity: No problem

The present intensity x 100: Serious Problem! \rightarrow much stronger strippers
R&D programs for the 1st stripper (2008-)

Carbon foil:
Large Carbon foils on a rotating cylinder. 60 times longer lifetimes than that of the fixed foil.

Gas stripper (N\textsubscript{2}):
1. Free from lifetime related problems.
2. Lower equilibrium charge state Q_e. (density effect)
The first test of a rotating stripper (May 2008)

A foil on the rotating cylinder was tested in May 2008 => Broke shortly, 15 min
Rotation speed ~ 100 rpm
Slowly rotating (0.05 rpm) foil (Mar. 2010)

Before irradiation

38 hours @ 1.7 eμA => Survived!

However,..

- Intensity before the stripper (A01)
- Intensity after the stripper (D15)
Test of the gas stripper (Feb./March 2009)

- U beam: The average charge state with the gas stripper was far below the acceptable state for the fRC.
What can we do to get higher charge state in gas?

- Higher stripping energy
 - Q_e measurements at (11), 14 and 15 MeV/u.
 - 22 MeV/u is necessary to get 69+ as Q_e.
 (cf. The present stripping energy is 11 MeV/u)
 - Huge remodel of the accelerators before and after the stripper.
 Such remodel will cost more than $10M.$
- Different material
 - Low-Z gas (H$_2$ and He)
Examples of charge state of U in He or N$_2$ (50 MeV/u)

Effective charge

Equilibrium charge state

NIMB 107 (1996) 9

NIM B 245 (2006) 32
Mechanism to get higher charge state

1: Equilibrium charge state Q_e is determined by competition between e-loss and e-capture.

2: Capture cross sections strongly depend on the V_p (ion velocity) compared with that of the target electrons.

3: e-Capture is highly suppressed due to bad kinematical matching when $V_p >> V_{1s}$ (the fastest target electron).

4: Suppression of e-capture is expected in the case of low Z region or higher ion velocity because $V_{1s} \sim Z/137$.

5: Q_e will be higher in low-Z region.

<table>
<thead>
<tr>
<th>Case</th>
<th>Ion @ Energy (MeV/u)</th>
<th>Target</th>
<th>V_p/V_{1s}</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U @ 22</td>
<td>He</td>
<td>14.9</td>
<td>Q_e (He) = Q_e (Ar) + 16</td>
</tr>
<tr>
<td>2</td>
<td>U @ 55.5</td>
<td>N_2</td>
<td>6.8</td>
<td>Q_e (N_2) = Q_e (C) - 2</td>
</tr>
<tr>
<td>3</td>
<td>U @ 11</td>
<td>He</td>
<td>10.4</td>
<td>Similar to Case 1,2?</td>
</tr>
<tr>
<td>4</td>
<td>U @ 11</td>
<td>N_2</td>
<td>3.0</td>
<td>Not similar to Case 1,2?</td>
</tr>
</tbody>
</table>
A simple estimation of cross section for 1e-loss and 1e-capture

Loss: M. Gryzinski, Phys. Rev. 138 (1965) A305. (Binary Encounter Model)
Experimental Method

Beam from RILAC
U beam
11 MeV/u 35+
14 MeV/u 41+
15 MeV/u 41+

C foil

Qi+ selection
(60+ < Qi+ < 75)

\[\sigma_{\text{capture}} = \frac{1}{t} \times \frac{I(Q_i - 1)}{\sum I(Q_j)} \]

\[\sigma_{\text{loss}} = \frac{1}{t} \times \frac{I(Q_i + 1)}{\sum I(Q_j)} \]

\(t \) : thickness of gas cell

\(I(Q_i) \) : Current at F41
Electron capture and loss cross sections of U in He-gas were measured to estimate the equilibrium charge state.

Measured Results

Eq. Charge state in N$_2$: 56+ @ 11 MeV/u

Acceptable with fRC: 69+

66+ @ 11 MeV/u

73+ @ 14 MeV/u

75+ @ 15 MeV/u
Difficulty in accumulation of low-Z gas

The existing gas stripper: He $\sim 15 \mu g/cm^2$ (0.7 kPa)
(cf. N_2 1.3 mg/cm2)

~ 1 mg/cm2 of low-Z gas is necessary to be accumulated to get higher charge state.

\rightarrow A new device to make it possible ...

Plasma Window (1995-)
Inventor: Ady Hershcovitch (BNL)
Plasma Window (Wall Stabilization Theory)

- **Cathode Holder**: (3x)
- **Anode**:
- **Insulator**:
- **3/8" Valve to Atmosphere**:
- **Gas Feed**:
- **Cathode**: (3x)
- **COOLING PLATES**:
- **TEFLON**:
- **To Roughing Pump**:
- **Valve**:
- **Box Pumped by Two Diffusion Pumps**:
- **VACUUM**:
- **Plasma by arc**: (15000K)
- **Atomosphere**:

Diagram Description:
- Plasma formation through an arc at 15000K within a vacuum chamber.
- Connections and components for gas feed, cathode, and insulator are highlighted.
- Valve connections to atmosphere and vacuum pump are also indicated.
Schematic sketch of the low-Z gas stripper using two plasma windows
R&D 1: Plasma Window (-March 2011)

R&D 2: Ar \rightarrow He (H_2), $d = 2$ mm \rightarrow 6 mm (2011)

R&D 3: gas cell with the two plasma windows for offline test (2012)
Review of the Talk

Introduction to RIBF

R&D works for charge stripper problem (C-foil on rotating cylinder and Gas (N₂))

Upgrade programs to increase beam intensity of U ion

Low-Z gas stripper

Sextupole
Summary

- The operation of RIBF after the first beam was very successful from 2007 to 2010.
- The new 28 GHz superconducting ECR ion source and the new injector are now ready to increase intensity of uranium beam.
- Stripper problem is still open:
 - large foil on rotation cylinder, \(\text{N}_2 \) gas stripper.
- Low-Z gas stripper is one of the candidates.
- We believe that the plasma window may solve difficulty in accumulation of low-Z gas.
Measurements of Equilibrium Charge State in Low-Z Gas using a Long Gas Stripper (9/24-9/26)

\[Q_e = 65^+ \] (He and H\(_2\))

\(238\text{U}^{35+} \rightarrow \) \(\text{H}_2/\text{He} (7\text{m}, 10\text{torr}) \rightarrow \) \(238\text{U}^{??+} \)

\[\text{mean charge} \]

\[\text{thickness [mg/cm}^2\text{]} \]

H. Imao et al. to be published