

Wir schaffen Wissen – heute für morgen

FEL Beamline Design and Experimental Methods or How to Get All Those Lovely Photons Onto My Sample and Measure Something Cool

Chris Milne

SwissFEL, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland

Guaranteed: Ultrafast photochemistry and photobiology

Guaranteed: Strongly correlated electron systems

1. Understanding correlated materials studying the dynamic interaction of lattice, orbital, charge & spin.

- **2.** Use ultrashort pulses to manipulate materials on an ultrafast time scale
 - magnetic structure
 - electronic polarization

Vibrationally induced phase transitions

Insulator-metal transition Rini et al. Nature (2007)

Pr_{0.7}Ca_{0.3}MnO₃

Kimura, Ann. Rev. Mater. Res. 37, 387

- Large amplitude electro-magnon excited with THz pulse
- Excitation: d-d transition in Mn³⁺/Mn⁴⁺ system
- · Fast removal of orbital order triggers collapse of Jahn-Teller distortion

Structural and charge order dynamics

Courtesy of Paul Beaud and Gerhard Ingold

August 28, 2014

chris.milne@psi.ch

80

Speculative: more accurate protein structures ?

Shorter X-ray pulses should at least avoid measuring the structural damage

PAUL SCHERRER INSTITUT Speculative: nonlinear X-ray spectroscopy ?

Figure 1. K, L^N satellite spectrum of Ti ionized by 64 MeV O ions. The spectrum was fitted with the model presented in the text. Voigt profiles were used for the satellite lines. The KL⁰ line was fitted with two Voigt functions of fixed widths obtained from the photoinduced spectra and two asymmetric lines describing the M satellites.

M. Kavčič et al. *X–ray Spectr.* **32**, 381 (2003)

Low-probability core-hole processes might become measurable with high peak powers

There's also significant ideas available from nonlinear optics and nonlinear spectroscopy in the optical regime

Structure

- X-ray crystallography
- electron microscopy
- atomic force microscopy
- electron diffraction
- X-ray absorption spectroscopy
- NMR

Protein structure of human hemoglobin in the T-state with oxygen bound at all 4 hemes (from PDB 1GZX Wikipedia)

Dynamics

- Laser spectroscopy
- NMR
- time-resolved diffraction
- X-ray absorption spectroscopy

Water transport through an aquaporin channel in a cell membrane <u>http://www.ks.uiuc.edu/Research/aquaporins/</u> Tajkhorshid, E., Nollert, P., Jensen, M.O., Miercke, L.J., O'Connell, J., Stroud, R.M., and Schulten, K. (2002). Science 296, 525–530

On what timescale do we want to measure structure ?

August 28, 2014

chris.milne@psi.ch

X-ray probe techniques for disordered systems

chris.milne@psi.ch

X-ray probe techniques for ordered systems

August 28, 2014

chris.milne@psi.ch

Now we just need an XFEL...

August 28, 2014

chris.milne@psi.ch

Why don't we build our own ?

Aramis:	1-7 Å hard X-ray SASE FEL,
	In-vacuum, planar undulators with variable gap.
	User operation from mid 2017

Athos :7-70 Å soft X-ray FEL for SASE & Seeded operation .(2nd phase)APPLE II undulators with variable gap and full polarization control.To be implemented after 2017

SwissFEL parameters

Wavelength from	1 Å - 70 Å			
Photon energy	0.2-12 keV			
Photon / pulse (1Å)	7.3 x 10 ¹⁰			
Pulse duration	1 fs - 20 fs			
Energy bandwidth	0.05-0.16%			
e ⁻ Energy	5.8 GeV			
e ⁻ Bunch charge	10-200 pC			
Repetition rate	100 Hz			

PAUL SCHERRER INSTITUT **Reflective X-ray Optics** We need to steer the X-rays to the experiment $\alpha > \alpha_c$ $\frac{\cos \alpha}{\cos \alpha'}$ lpha' n_R $\cos \alpha_c = n_R$ $\alpha < \alpha_c$ At grazing angles below the critical angle we get total external reflection 2 mrad 1.0 0.8 $\alpha[degrees] \sim \lambda[\rm{\AA}]/10$ Reflectance 0.6 Maximum reflected angle (mrad) 0.4 0.100 0.050 0.2 10 nm B C / 50 nm SiC on Si 50 nm SiC on Si 0.020 0.0 5000 10000 15000 20000

0.010 0.005 0.002 10 0 4 8 2 6

photon energy (eV)

0

Courtesy of Rolf Follath

August 28, 2014

chris.milne@psi.ch

12

Photon Energy (keV)

PAUL SCHERRER INSTITUT X-ray mirrors for XFELs

200 nC. 21 fs (rms

We need to **know**:

- Photon energy range Θ
- Beam size on the mirror
- Pulse energy and average power Θ

We need to **optimize**:

- No absorption edges Θ
- Maximum throughput Θ
- **Reflected angle** Θ
- Mirror length Θ

28.11.2012, updated. 23.9.2013 200 pC, 21 fs (rms								
Photon energy		1770	3540	5320	7090	8860	10600	12400
Source size*	μm	44	31	29	28	27	26	25
~ divergence*	µrad	6.4	3.4	2.3	1.8	1.5	1.3	1.1
Pulse energy	mJ	0.20	0.15	0.16	0.18	0.18	0.18	0.16
Spectr. Bandw.*	%	0.17	0.09	0.09	0.07	0.06	0.06	0.06
Size at M ₁₁ *	mm	0.41	0.22	0.15	0.12	0.10	0.099	0.075
Fluence at M ₁₁ *	mJ/cm ²	38	99	226	408	578	755	912
Footprint on M ₁₁ * (3 mrad)	mm	97	52	35	28	23	21	18
Fluence at M ₃₃ *	mJ/cm ²	6.6	17	41	75	107	142	176
Footprint on M ₃₃ * (4 mrad)	mm	173	92	62	49	41	35	30

rms-values

M₁ at 64 m, M₃ at 153 m

S. Reiche, 27. Nov. 2012: https://intranet.psi.ch/Swiss_FEL/SwissFELSimAramis-Design

Optics should accept 5 rms

PAUL SCHERRER INSTITUT X-ray mirrors for SwissFEL Aramis

Small grazing incidence angle

- high reflectance +
- long mirrors

Mirror should accept 5σ of beam (at least 4σ)

August 28, 2014

FEL'14 Basel, Switzerland

10

10 keV

Courtesy of Rolf Follath

FEL'14 Basel, Switzerland

 $\begin{array}{c} 2^{\text{rid}} \text{ crystal} \\ \hline \mathbf{T}_1 \\ \hline \mathbf{T}_1 \\ \hline \mathbf{T}_1 \\ \hline \mathbf{T}_2 \\ \hline$

 $n\lambda = 2d_{hkl}\sin\theta$

chris.milne@psi.ch

10000

photon energy (eV)

5000

0

15000

20000

Switching from pink beam to monochromatic

We want to be able to switch easily between the two modes

BUT we don't want to have to move everything when we switch

Solution: Two vertical offset mirrors to correct for the monochromator*

*Added bonus: harmonic rejection !

higher-order harmonics

Courtesy of Rolf Follath

Experimental X-ray focus

There are lots of ways to focus X-rays onto your sample

- Chromatic
- Capable of very small focus (<1µm)
- Short working distance
- Easy alignment
- Inflexible (specific focus at specific X-ray energy)

Compound refractive lenses

- Chromatic
- Beam always on-axis
- Very long working distance (meters)
- Focal point Easy alignment
 - Focus profile depends on quality of lens

You need to pick what's right for the experiment

X-ray Photon Diagnostics

Prioritisation

PAUL SCHERRER INSTITUT

This is a multi-dimensional problem and needs to be established through discussion with potential uses, external review, and realistic projections

Experimental Station A at SwissFEL

October 2008:	XFEL Workshop at EPFL in Lausanne to stimulate ideas
January 2010:	Science case document published (available online)
September 2011:	Open meeting in Bern for all potential interested users in Switzerland and elsewhere to provide details on current status of project
March 2012:	ESA Instrumentation Workshop to figure out what should be implemented at ESA
mid-2012:	ESA budget numbers established
June 2013:	Completion of ESA Conceptual Design Report and presentation of concept to Photon Science Advisory Committee
January 2014:	ESA Advisory Committee Meeting to obtain specific and technical feedback on plans prior to preparation of Technical Design Report

At this point we know what we should prioritize, who is interested in what techniques, how we're going to do it, and the general time-frame

So call all your friends, let's go do an experiment !

Experiment #1 Serial Femtosecond Crystallogrpahy

X-ray nanocrystallography: Retrieving crystalline structure

Jungfrau02 bump bonded ass

PAUL SCHERRER INSTIT

SFX measurements

PAUL SCHERRER INSTITUT

chris.milne@psi.ch

PAUL SCHERRER INSTITU Sample delivery: liquid jet for SFX and WAXS

Massive drawback: working in vacuum is a headache

200 µm

Spot Magn Det WD V 5.0 150x GSE 14.6 AUX 1.1 Torr ASU

Liquid jet accessories

Anti-settling tank (prevent crystals from settling in container Remote controlled valves to switch between samples, buffer, water

I. Schlichting, J. Miao Curr. Op. Struct. Bio. 22, 613-626 (2012)

Gas pressure control High-pressure liquid chromatography connections everywhere Gas tanks for pressurization or HPLC pumps

August 28, 2014

SFX Data Processing

Experiment #2 X-ray spectroscopy experiments

X-ray spectroscopy experiments at XFELs

X-ray intensity normalization for scans

chris.milne@psi.ch

Introduction to von Hamos X-ray spectrometers

von Hamos geometry

- Dispersive so you get a complete energy range per XFEL pulse
- 25 cm radius of curvature crystals means compact setup
- Scan-free setup means no moving parts
- Development of segmented crystals provides excellent energy resolution
- Scales easily with additional crystal+detector pairs to cover other energies

Hoxs: Holochromatic X-ray Spectroscopy

Goal: The ability to obtain a holistic picture of the sample

Experiment #3 Pump-probe experiments

First we need to get the laser into the setup

Control over the laser is pretty simple so this is quite flexible

Pump-probe jitter correction

August 28, 2014

chris.milne@psi.ch

Getting the best pump-probe time resolution

Conclusions

This is obviously a SwissFEL perspective, but it's by no means unique

Experiments: Users will definitely use the XFEL in ways we haven't thought of

- **Optics**: Optics can wreck things very quickly (acceptance, coherence) Changing the photon energy needs to be as simple as possible
- **Diagnostics**: The most important diagnostic is the one closest to the experiment
- Priorities: XFEL experimental stations need to duplicate many storage ring beam

XFEL Science Success Stories

- Serial Femtosecond Crystallography (Biology)
- Pump-probe Experiments (Chemistry, Biology, Condensed Matter Physics)
- Nonlinear X-ray Experiments (AMO, Condensed Matter Physics, Chemistry)

SwissFEL project: R. Abela, P. Juranic, B. Pedrini, L. Patthey, Ch. Erny, B. Patterson, L. Sala, T. Penfold, P. Heimgartner, P. Wiegand, J. Szlachetko FEMTO group: A. Caviezel, S. Grübel, J. Johnson, S. Mariager; SYN department: U. Flechsig, R. Follath, B. Schmitt, A. Mozzanica, M. Nachtegaal, D. Grolimund, C. Borca, A. Menzel, T. Huthwelker; GFA department: S. Hunziker, S. Reiche, V. Schlott, M. Kaiser; ETH Zürich: S. Johnson; **ESA Review Committee** N. Huse; **CFEL**: January 23-24, 2014 LCLS: R. Coffee, D. Fritz, M. Trigo; Wojciech Gawelda (XFEL) EPFL: M. Chergui; György Vankó (Wigner Institute) Andreas Menzel (PSI) XFEL: W. Gawelda, A. Galler; Daniel Grolimund (PSI) DTU: K. Haldrup; Majed Chergui (EPFL) Wigner: G. Vankó; Jean-Claude Dousse (U. Fribourg) Eric Dufresne (Argonne) M. Lorenc; **Rennes:** Aymeric Robert (LCLS) Fribourg: J-C. Dousse, J. Hoszowska; Josef Feldhaus (DESY)