

Thermal Emittance Measurements at the SwissFEL Injector Test Facility

<u>*E. Prat*</u>, S. Bettoni, H. H. Braun, M. C. Divall, R. Ganter, C. P. Hauri, T. Schietinger, A. Trisorio, C. Vicario; Paul Scherrer Institute (PSI) Free Electron Laser Conference Basel, 28 August 2014

Introduction

SwissFEL and SwissFEL Injector Test Facility

Slice emittance measurement procedure

- > Results:
 - > Overview
 - Laser wavelength
 - Field at the cathode
 - > Cathode material (Cu and Cs_2Te)
 - Summary

Conclusion

Method to measure slice emittance developed and tested at the SwissFEL Injector Test Facility:

- Errors estimated to be smaller than 5%
- Longitudinal resolution of ~4 µm (with TD) / Emittance resolution of 2-3 nm
- Normalized emittance measured down to 25 nm for a beam charge of 30 fC
- Normalized thermal emittance measured down to ~350 nm/mm
- > Thermal emittance measurements agree well with theoretical expectations
 - Effective work functions,
 - Wavelength and cathode field dependence
- Effective work function can be reconstructed from Schottky and wavelength scans

> Measured Cu and Cs_2Te under the same conditions. Cs_2Te seems a viable option for SwissFEL:

- Slice and thermal emittance ~25% higher than for Cu
- QE of few per cent ~2 orders of magnitude higher than for Cu

 $\frac{\mathcal{E}_n}{\underline{-}} \leq$ Transversely coherent FEL radiation is generated when Y

 \mathcal{E}_n : normalized emittance, γ :Lorentz factor, λ : FEL wavelength

 \geq If the normalized emittance is reduced:

- \succ The final beam energy can be decreased \rightarrow more compact and cheaper accelerator (; ;
- Higher radiation power and shorter undulator line for a given beam energy \geq

The thermal emittance is a significant contributor of the final beam emittance. It can be expressed as (neglecting tilted surface effects):

1 1

$$\mathcal{E}_{th} = \sigma_l \sqrt{\frac{\varphi_l - \varphi_{eff}}{3m_0 c^2}}$$

$$\sigma_l \quad \text{rms laser beam size,}$$

$$\phi_l \quad \text{laser photon energy,}$$

$$\phi_{eff} \quad \text{effective work function}$$

 4π

PAUL SCHERRER INSTITUT

Introduction (II)

Effective work function
$$\phi_{eff} = \phi_w - \phi_s = \phi_w - \sqrt{\frac{e^3}{4\pi\epsilon_0}}\beta E_c(\varphi)$$

material work function ϕ_{c} Schottky effect ϕ_{w} β Enhancement factor (surface properties) $E_{c}(\varphi)$ Field on the cathode at injection phase φ

Expected effective work functions: ~4.0 eV for copper, ~3.6 eV for cesium telluride

When E_c varies in a small range for a metal photocathode $|QE \propto (\phi_l - \phi_{off})^2|$

The effective work function can be determined by measuring the QE as a function of the phase (Schottky scan) OR the QE as a function of the laser energy (wavelength scan)

Refs:

D. H. Dowell and J. Schmerge, Phys. Rev. ST Accel. Beams 12, 074201 (2009). K. Flöttmann, TESLA FEL Report No. 1997-01, 1997.

Z. M. Yusof, M. E. Conde, and W. Gai, Phys. Rev. Lett. 93, 114801 (2004).

H. J. Qian et al, Phys. Rev. ST Accel. Beams 15, 040102 (2012).

Electron source

RF gun with CaF_2 laser driven with Cu (or Cs_2Te) photocathode

RF structures

- Normal conducting
- Gun and Injector: S-band
- ≻Linac: C-band
- X-band for phase-space linearization

Undulator beamlines:

1. Aramis: hard X-ray FEL for SASE (1-7 Å) and self-seeding

In-vacuum , planar undulators with variable gap, period = 15mm

2. Athos: soft X-ray FEL for SASE (7-70 Å) and self-seeding

Undulators with variable gap and full polarization control, period = 40mm

Wavelength	1 Å - 70 Å	
Pulse duration	3 – 20 fs	
e⁻ Energy	5.8 GeV	
e ⁻ Bunch charge	10 – 200 pC	
Repetition rate	100 Hz	
Slice emittance (design)	0.18 μm (10 pC) 0.43 μm (200 pC)	
Slice energy spread	250 – 350 keV	
Saturation length	<50 m	

Construction started in 2013 Commissioning: end 2015 – mid 2017 User operation for Aramis planned in 2017 Athos planned for 2019

SwissFEL Injector Test Facility (SITF)

Missions

Benchmark the performance predicted by simulations and prove the feasibility of SwissFEL
 Develop and test components/systems and optimization procedures for SwissFEL

Commissioning phases

- Phase 1: Electron source and diagnostics (03/2010 07/2010)
- Phase 2: Phase 1 + (some) S-band acceleration (08/2010 summer 2011)

 Phase 4: Undulator experiment (first FEL in Switzerland, see MOP053) + installation of new PSI gun, see THP049 (2014)

Optics-based emittance measurements

+ SwissFEL

> The initial beam moments at s_0 are obtained by measuring the beam sizes at *s* for different optics transformations

>At least 3 transformations are needed, but more measurements improve the robustness of the reconstruction

> The best reconstruction is when the phase-advance is covered regularly between 0 and π

From the beam moments the emittance and the Twiss parameters are obtained

$$\varepsilon_{x} = \sqrt{\langle x^{2} \rangle \cdot \langle x^{2} \rangle - \langle xx' \rangle^{2}}$$
$$\beta_{x} = \langle x^{2} \rangle / \varepsilon_{x}$$
$$\gamma_{x} = \langle x^{2} \rangle / \varepsilon_{x}$$
$$\alpha_{x} = -\langle xx' \rangle / \varepsilon_{x}$$

>There are two general strategies to scan the phase advance

I. Multiple position with fixed optics: FODO

screen

 $\left\langle x^{2}\right\rangle_{s} = R_{11}^{2} \cdot \left\langle x^{2}\right\rangle_{s_{0}} + R_{12}^{2} \cdot \left\langle x^{\prime 2}\right\rangle_{s_{0}} + 2R_{11}R_{12} \cdot \left\langle xx^{\prime}\right\rangle_{s_{0}}$

Parasitic measurements More equipment Dedicated long lattices Not flexible

Chosen option for emittance meas.

quad

The beam is **deflected** in one direction as a function of time and the slice parameters in the other direction are reconstructed using 2D profile monitors.

PAUL SCHERRER INSTITUT

Optics for slice emittance measurements

5 quadrupoles are used to:

PAUL SCHERRER INSTITUT

- Scan phase-advance in the meas. plane
- Optimize longitudinal resolution

Keep beta-functions at the PM under control

Longitudinal
$$\propto \frac{\sqrt{\mathcal{E}_{y}}}{\sum_{i} \sqrt{\beta_{y_{TD_{i}}}} \cdot \sin(\Delta \mu_{y_{TD_{i}} \rightarrow PM})}$$

 β_{yTDi} : β -function at the deflector *i* in the streaking direction $\Delta \mu_{yTDi \rightarrow PM}$: vertical phase-advance in the streaking direction between deflector I and profile monitor

 ϵ_{y} = emittance in the streaking direction

Long. resolution (assuming , ϵ_y =0.5µm, E=250MeV) TD: ~4 µm (V=5MV)

Dispersion method (dE/E=1%):

x meas: 5 slices per bunch length (quad. kick = 5mrad) y meas: 6 slices per bunch length (max. corr. strength)

Emittance resolution, errors and matching

+ SwissFEL

- SwissFEL profile monitor (YAG)
 - □ Beam size resolution is ~15 µm, equivalent to an emittance resolution of 2-3 nm (E=250MeV)
 - □ Signal to noise ratio is good enough to measure slice emittance for bunch charges of less than 1pC

Errors

- Statistical errors from beam size variations (what is shown in the error bars of the measurements). For 5% of beam size measurement error this is below 3% (if Δµ_x=10deg).
- Systematic errors expected to be below 5%:
 - Screen calibration ($\sim 1\% \rightarrow \sim 2\%$) and resolution
 - Energy and quadrupole field errors (<1%)</p>
 - > Optics mismatch
 - Others (e.g. errors associated to Gauss fit)

Matching

- Beam core is always matched to exclude errors due to optics mismatch
- Matching of the core works normally in 1-2 iterations
- Successful matching gives us confidence in the obtained emittance values

Smallest measured emittance

- > Measurement done for a total bunch charge of about 30 fC
- Measurement done with low gradient (E=3.7 MeV) and smallest laser aperture (rms laser beam size around 50 µm)
- Core slice emittance < 25 nm</p>

+ SwissFEL

Thermal emittance measurements as a function of

- ≻Laser wavelength
- ➢Field at the cathode
- >Cathode material: copper and cesium telluride

Procedures

Emittance: The thermal emittance is defined as the core slice emittance when space-charge and rf effects are negligible. The normalized thermal emittance $\mathcal{E}_{th} / \mathcal{O}_l$ is reconstructed by

measuring the emittance as a function of the rms laser beam size

- > The effective work function can be alternatively reconstructed from:
 - Wavelength scan (QE vs laser wavelength)
 - Schottky scan (QE vs rf phase)

➤The QE is measured by recording the charge at a calibrated BPM (2.6 m downstream of the gun) as a function of the laser intensity.

Used lasers

Ti:Sapphire laser + OPA (wavelength dependence measurements)
 ND:YLF laser (all the rest)

Used cathodes (see THP046)

Copper: cath_3 (laser dependence), cath_19 (field at the cathode dependence)

Cesium telluride: cath_13 and cath_8

From the slice emittance to the thermal emittance

1) Be sure that space-charge effects are negligible

- We find the space-charge limit by decreasing the charge until the emittance is constant. Then the charge-density is kept constant for all the laser sizes
- Need to have high-sensitivity profile monitor!

The high-order effects depend on the rf field (see next slides)
Linear behavior with new SwissFEL gun

Wavelength dependence

+ SwissFEL

-- 100

Schottky-scan example

200

220

Phase (deg)

240

hermal emittance parameter:701 nm/mm

Effective Workfunction:4.06+/-0.1 eV

160

Workfunction:4.561 eV Shottky-effect:0.5 eV

100

Charge (pC)

Set 1: (260.1 nm and 267.6 nm) •Direct emittance measurement (aperture scan) •Schottky scan

Set 2 (1 month later than set 1): •Slice emittance at smallest aperture for 4 wavelengths between 260.1 nm and 275 nm (overestimates thermal emittance by 10-20%) •Schottky scan

•Wavelength scan (250-300 nm)

Wavelength dependence

- Measurements agree well with expected work functions
- > Wavelength dependence as expected by theory \mathcal{E}_{th} / $\sigma_l \propto \sqrt{\phi_l}$
- Wavelength-scans and Schottky-scans can be used to reconstruct the normalized thermal emittances
- Same cathode show different work function after one month of operation

Field at the cathode dependence

+ SwissFEL

Field at the cathode [MV/m]	Normalized thermal emittance [nm/mm]	Quadratic component [nm/mm2]
49.9	428±16	716±84
34.8	370±25	508±137
16.4	346±25	321±105

- ➢ Quadratic component decreased as a function of the gradient → higher order effects are due to rf
- > Normalized thermal emittance changed as a function of the gradient as expected by theory $\mathcal{E}_{th} / \sigma_l \propto E_c(\varphi)^{1/4}$

Material dependence: Cu vs Cs₂Te

+ SwissFEL

Cathode material	Cathode label	Normalized thermal emittance [nm/mm]	Slice emittance at 200 pC [nm]	QE
Cu	19	430±20 (*)	~200	~10-4
Cs ₂ Te	13	713±88	~250	10 ⁻² - 10 ⁻³
Cs ₂ Te	8	549±29 (*)	-	>10-2

(*) Measurements done with the same machine conditions

- Two Cs₂Te cathodes tested for a week
- Cs₂Te seems a viable alternative to Cu for SwissFEL
 - Emittance is only ~25% worse
 - QE is ~2 orders of magnitude higher
- Need to improve QE homogeneity
- More tests needed

PAUL	SCHEI	RRER	N S T	ITUT
	-		Π	
_			L	

Summary

+ SwissFEL

Label	Material	Meas. day	Norm. thermal emittance [nm/mm]	Laser wavelength [nm]	Field on the cathode [MV/m]
3	Cu	31-10-2012	547 ± 10	260.1	49.9
3	Cu	30-10-2012	508 ± 35	267.6	49.9
19	Cu	25-09-2013	428 ± 16	262.0	49.9
19	Cu	25-09-2013	370 ± 25	262.0	34.8
19	Cu	27-09-2013	346 ± 25	262.0	16.4
19	Cu	04-04-2014	430 ± 20	262.0	49.9
13	Cs ₂ Te	28-10-2013	713±88	262.0	49.9
8	Cs ₂ Te	04-04-2014	549 ± 29	262.0	49.9

Wavelength dependence

Field at the cathode dependence

Cathode material dependence

Measurements at other labs (Cu): ~900 nm/mm

H. J. Qian et al, Phys. Rev. ST Accel. Beams 15, 040102 (2012)

Y. Ding et al, Phys. Rev. Lett. 102, 254801 (2009)

Method to measure slice emittance developed and tested at the SwissFEL Injector Test Facility:

- Errors estimated to be smaller than 5%
- Longitudinal resolution of ~4 µm (with TDC) / Emittance resolution of 2-3 nm
- Normalized emittance measured down to 25 nm for a beam charge of 30 fC
- Normalized thermal emittance measured down to ~350 nm/mm
- > Thermal emittance measurements agree well with theoretical expectations
 - Effective work functions,
 - Wavelength and cathode field dependence
- Effective work function can be reconstructed from Schottky and wavelength scans

> Measured Cu and Cs_2Te under the same conditions. Cs_2Te seems a viable option for SwissFEL:

- Slice and thermal emittance ~25% higher than for Cu
- QE of few per cent ~2 orders of magnitude higher than for Cu

We would like to thank All technical groups involved in the SwissFEL Test Facility

Special thanks go to Rasmus Ischebeck to develop and implement the SwissFEL profile monitor used in our measurements

Thanks for your attention!

- Second order effects are negligible
- > Normalized thermal emittance comparable to old cathodes and old gun