Simultaneous Measurement of Electron and Photon Pulse Duration at FLASH

Why measure FEL pulse durations ?

- > FEL characterization
- > non-linear physics
- > Ultra-fast Dynamics:

Pump – probe experiments

- 1. Can we setup the FEL to a **defined** pulse duration
- 2. Calibrate "indirect" methods against "direct" ones
- 3. Measure the scaling factor between **photon** pulse length and **electron** bunch length
- 4. Find out advantages / disadvantages of different methods

S. Düsterer¹, M. Rehders,² A. Al-Shemmary,¹ C. Behrens,¹ G. Brenner,¹ O. Brovko,³ M. DellAngela,^{2, 4} M. Drescher,² B. Faatz,¹ J. Feldhaus,¹ U. Frühling,² N. Gerasimova,^{1, 5} N. Gerken,² C. Gerth,¹ T. Golz,¹ A. Grebentsov,³ E. Hass,^{1, 2} K. Honkavaara,¹ V. Kocharian,¹ M. Kurka,⁶ Th. Limberg,¹ R. Mitzner,^{7, 8} R. Moshammer,⁶ E. Plönjes,¹ M. Richter,⁹ J. Rönsch-Schulenburg,² A. Rudenko,¹⁰ H. Schlarb,¹ B. Schmidt,¹ A. Senftleben,¹¹ E. Schneidmiller,¹ B. Siemer,⁷ F. Sorgenfrei,^{2, 8} A. Sorokin,¹ N. Stojanovic,¹ K. Tiedtke,¹ R. Treusch,¹ M. Vogt,¹ M. Wieland,² W. Wurth,^{1, 2} S. Wesch,^{1, 8} M. Yan,¹ M. Yurkov,¹ H. Zacharias,⁷ and S. Schreiber¹

- > ¹Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg, Germany
- > ²Universit¨at Hamburg, Physics Department and Center for Free-Electron
- > Laser Science, Luruper Chaussee 149, D-22761 Hamburg, Germany
- > ³JINR, Joliot-Curie 6, 141980 Dubna, Moscow region, Russia
- > ⁴FERMI, Elettra Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
- > ⁵European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg, Germany
- > ⁶Max-Planck-Institut fur Kernphysik, 69117 Heidelberg, Germany
- > ⁷Physikalisches Institut, Westfalische Wilhelms-Universit¨at, Wilhelm Klemm Str 10, 48149 M¨unster, Germany
- > 8Helmholtz-Zentrum Berlin fur Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
- > ⁹Physikalisch-Technische Bundesanstalt, 12489 Berlin, Germany
- > ¹⁰J. R. MacDonald Laboratory, Kansas State University,
- > 116 Cardwell Hall, Manhattan, Kansas 66506, USA
- > ¹¹Universität Kassel, Institut fur Physik, Heinrich-Plett-Str. 40, 34132 Kassel/Germany

Outline

> Electron beam diagnostics

- Transverse Deflecting Structure (TDS)
- THz spectroscopy (CRISP)
- Bunch Compression Monitor (BCM)
- Indirect photon based methods
 - Spectral characteristics
 - Pulse energy fluctuations statistics
 - Mapping SASE to visible light: "afterburner"
- > Direct photon based methods
 - Autocorrelation
 - Optical Cross-correlation
 - THz streaking
- > Experimental results
- Start to end simulations
- > Summary

Electron Diagnostics: Transverse deflecting cavity (TDS)

PRO:

- very good resolution (few fs)
- (meanwhile) online diagnostic
- Arbitrary pulse in bunch train can be measured

CON:

- only 1 bunch out of bunch train destructive !
- dispersive measurements (chirp) not online

Courtesy: M. Yan, Ch. Gerth

Electron Diagnostics: CRISP

Beamline overview

Courtesy: E. Hass, B. Schmidt

PRO:

- reconstructed bunch shape for single bunches
- •Arbitrary pulse in bunch train can be measured

CON:

- •Needs complicated math to get to bunch shape
- •only 1 bunch out of bunch train destructive !

Electron Diagnostics: Bunch Compression Monitor (BCM)

Setup BCM (Beam Compression Monitor)

PRO:

- parasitic
- bunch resolving
 CON:
- no info about bunch shape
- •Dependent on integration area (detector response)

Courtesy of S.Wesch

$$I_{\rm coh} = \int \frac{dU_{\rm coh}}{d\lambda} \mathrm{d}\lambda.$$

Outline

- > Electron beam diagnostics
 - Transverse Deflecting Structure (TDS)
 - THz spectroscopy (CRISP)
 - Bunch Compression Monitor (BCM)

Indirect photon based methods

- Spectral characteristics
- Pulse energy fluctuations statistics
- Mapping SASE to visible light: "afterburner"
- > Direct photon based methods
 - Autocorrelation
 - Optical Cross-correlation
 - THz streaking
- > Experimental results
- > Start to end simulations
- > Summary

Indirect PHOTON methods: spectral correlations

PRO:

- Rel. easy to use
- bunch resolved **CON:**
- not parasitic (at Flash)
- assumptions needed for reconstruction

A. A. Lutman, et al. Phys. Rev. ST Accel. Beams **15**, 030705 (2012).

Courtesy N. Gerasimova, R. Engel

Indirect PHOTON methods: Statistical fluctuations

PRO:

- rel. easy to use
- Relies on well tested theory **CON**:
- Only valid for linear regime
- Only **lower limit for pulse dur.** in saturation
- remove machine-related fluctuations
- Spatial and temporal modes are mixed

$$\tau_{fel} = M \tau_{coh}$$

$$p(W) = \frac{M^M}{\Gamma(M)} \left(\frac{W}{\langle W \rangle}\right)^{M-1} \frac{1}{\langle W \rangle} \exp\left(-M\frac{W}{\langle W \rangle}\right)$$
$$M^{-1} = \sigma_W^2 = \langle (W - \langle W \rangle)^2 \rangle / \langle W \rangle^2$$

Ackermann et al., Nature Photon.1(2007)336

Indirect PHOTON methods: "afterburner"

Courtesy: N. Stojanovic

Outline

- > Electron beam diagnostics
 - Transverse Deflecting Structure (TDS)
 - THz spectroscopy (CRISP)
 - Bunch Compression Monitor (BCM)
- Indirect photon based methods
 - Spectral characteristics
 - Pulse energy fluctuations statistics
 - Mapping SASE to visible light: "afterburner"

> Direct photon based methods

- Autocorrelation
- Optical Cross-correlation
- THz streaking
- > Experimental results
- > Start to end simulations
- > Summary

Direct PHOTON methods: auto correlation

Courtesy R. Moshammer

FEL split and delay

R. Mitzner, et al. Optics Express 16, 19909 (2008); F. Sorgenfrei, et al, Rev. Sci. Instrum. 81, 043107 (2010)

Stefan Düsterer | FEL 2014 – THB01 | 28.8.2014 | Page 15

Direct PHOTON methods: auto correlation

Pathways to He²⁺ at 24 nm

eV

54.42

52,24

48.38

40.82.

0_

Pro

- "direct" measurement (for known reactions) Con
- **Experimentally challenging** (takes long time)
- (up to now) averaging technique •
- well defined for < 25 nm •
- For XUV several path lead to same ionization state -> Simulations needed

Direct PHOTON methods: XUV reflectivity

X-Ray Reflectivity of Si₃N₄

Direct PHOTON methods: Undulator based THz streaking

THz streak camera for femtosecond XUV pulse length measurement

Experimental setup

Courtesy M. Drescher

Direct PHOTON methods: Undulator based THz streaking

Courtesy M. Drescher

What was measured ???

Machine parameters:

- 13.5 nm, 150 pC, ~ 50 µJ, 30 bunches, 250 kHz
 -> goal ~ 50 fs
- 24.0 nm, 130 pC, ~ 50 μJ, 30 bunches, 250 kHz
 -> goal ~ 50 fs with gradient

Machine parameters:

• 13.5 nm, 150 pC, ~ 50 μ J, 30 bunches, 250 kHz -> goal ~ 50 fs

Direct and indirect photon methods (13.5 nm)

Machine parameters:

• 13.5 nm, 150 pC, ~ 50 μ J, 30 bunches, 250 kHz -> goal ~ 50 fs

Photon and electron methods (13.5 nm)

Machine parameters:

• 13.5 nm, 150 pC, ~ 50 μJ, 30 bunches, 250 kHz -> goal ~ 50 fs

Simulation with Gaussian model (FAST)

1D simulation with Gaussian longitudinal electron profile

E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, Nucl. Instr. Meth. A 429 , 233 (1999).C. Behrens, et al. Phys. Rev. ST Accel. Beams 15, 030707 (2012)

Stefan Düsterer | FEL 2014 – THB01 | 28.8.2014 | Page 24

Courtesy M. Yurkov, E. Schneidmiller

Start-to-end simulation (Astra, CSRtrack & Genesis)

Simulation by M. Rehders Poster / paper MOP059.

Start-to-end simulation (Astra, CSRtrack & Genesis)

Simulation by M. Rehders Poster / paper MOP059.

Only the leading part of the bunch has low emittance and good matching

Start-to-end simulation (Astra, CSRtrack & Genesis)

Spatial electron distribution

One example for a non-Gaussian particle distribution.

- > Goal parameters reached (50 fs, 50 µJ)
- > Very good agreement between direct and indirect photon based methods
- > scaling factor (photons/electrons) 0.3-0.4 can be explained with simulations.

Direct and indirect photon methods (24 nm)

Machine parameters:

• 24.0 nm, 130 pC, ~ 50 μ J, 30 bunches, 250 kHz

Photon and electron methods (24 nm)

Machine parameters:

• 24.0 nm, 130 pC, ~ 50 μ J, 30 bunches, 250 kHz

Summary 24 nm run

Goal parameters reached: 50 fs +-30fs, 50 µJ

- > Large scatter of measurements
- > scaling factor (photons/electrons) ~ 0.6
- Limits due to assumptions used by different techniques (Gaussian photon pulses, sensitivity to chirp ...)
- Not enough information available to reconstruct cause for discrepancies
- > New test measurements needed

Summary

- No pulse length diagnostic for ALL needs
- > Electron bunch length diagnostics:
 - Good monitor for changes (drifts)
 - Estimate for XUV pulse duration (upper limit for short wavelength)
- > Photon pulse length diagnostics
- Indindirect mentions submitted
 Indindirect mentions submitted
 Indindirect mentions submitted
 Indindirect mentions submitted
 Indindirect mentions
 Inding mentions

Better knowledge about XUV pulse duration / shape @ FLASH:

- > focus on pulse length photon diagnostics:
 - Direct: Laser based THz streaking (own setup designed / collaboration PSI, XFEL ...)
 - Direct: XUV-optical reflectivity changes (ongoing measurements, e.g. Nat Comm. 4 1731 (2013))
 - Indirect: Afterburner (THA04)
 - Indirect: Spectral analysis (evaluation of "online" pulse duration tool)
- > Single mode operation (TUB04)
- > Seeding options ...

