Tutorial: Introduction to Free-Electron Laser Theory

> Agostino Marinelli¹ and Claudio Pellegrini^{1,2} ¹SLAC National Accelerator Laboratory ²Department of Physics and Astronomy,

Outline

SLAC

-Basic princples

-1-D theory

-Introduction to 3-D theory

Undulator radiation, single electron

On Axis

On resonance:

Radiation slips ahead by one wavelength per undulator period

Each electron emits a wave train with N_U cycles

For a case like that of LCLS: $\gamma \approx 3 \times 10^4$, $\lambda_U \approx 3cm$, $K \approx 3$, $N_U \approx 3500$ $\lambda = 0.1nm$, $\Delta \omega / \omega \approx 3 \times 10^{-4}$, $\lambda N_U = 0.3 \mu m (1 fs)$

FEL: Working Principle SLAC

SLAC

SLAC

Application to x-rays severely limited by mirror availability

SLAC

SLAC

Linear FEL Equations SLAC

Linear FEL Equations SLAC

Energy Modulation Density Modulation

Resonant Interaction

 $\frac{d}{dz}b = -2ik_w\tilde{\eta}$

Coherent Radiation

Linear FEL Equations

Assumptions

- Neglect diffraction
- Small signal (b << 1)
- Slowly varying envelope (i.e. narrow bandwidth signal)
- No velocity spread (longitudinal and transverse)

Exponential Growth @ Resonance. $\Delta = 0$ $E, b, \tilde{\eta} \propto \exp(-2ik_w\alpha z)$ $\alpha^3 = \rho^3$

 $\rho = (Kk_p/4k_w)^{(2/3)}$

The ρ parameter $\rho = (Kk_p/4k_w)^{(2/3)}$

 $\propto n_e^{1/3}$

High density -> higher gain! (note: scaling typical of all 3-wave instabilities...)

 $\propto 1/\gamma$

Smaller growth rate at higher energies

 $\propto K^{2/3}$

Stronger magnetic field -> higher gain

Typically 10⁻³ to 10⁻⁴ for x-ray parameters

That's Pretty Much it... SLAC

First lasing and operation of an ångstrom-wavelength free-electron laser

P. Emma^{1*}, R. Akre¹, J. Arthur¹, R. Bionta², C. Bostedt¹, J. Bozek¹, A. Brachmann¹, P. Bucksbaum¹,
R. Coffee¹, F.-J. Decker¹, Y. Ding¹, D. Dowell¹, S. Edstrom¹, A. Fisher¹, J. Frisch¹, S. Gilevich¹,
J. Hastings¹, G. Hays¹, Ph. Hering¹, Z. Huang¹, R. Iverson¹, H. Loos¹, M. Messerschmidt¹,
A. Miahnahri¹, S. Moeller¹, H.-D. Nuhn¹, G. Pile³, D. Ratner¹, J. Rzepiela¹, D. Schultz¹, T. Smith¹,
P. Stefan¹, H. Tompkins¹, J. Turner¹, J. Welch¹, W. White¹, J. Wu¹, G. Yocky¹ and J. Galayda¹

What Happens at Saturation? SLAC

@ saturation b ~ 1 — $|\tilde{\eta}_{sat}| \sim
ho$

What Happens at Saturation? SLAC

$$P_{rad} = Z_0 |\bar{E}|^2 = \rho P_b |b|^2$$

@ saturation b ~ 1 $\begin{array}{l} & & \\ & & \\ & & \\ P_{sat} \sim \rho P_b & For typical HXR FELs ~ \\ & 10-100 \ \text{GW} \end{array}$

Normalized FEL Equations SLAC Normalize everything to saturation value $\frac{d}{d\bar{z}}a +$ $-i\frac{\Delta}{2\rho}a = -b$ $a = \bar{E} \sqrt{\frac{Z_0}{P_b}}$ dip $\bar{z} = 2k_w \rho z$

Dispersion Relation for General Detuning

$$\lambda^3 - \delta\lambda^2 - 1 = 0$$

1.5 lm(λ) $-\text{Re}(\lambda)$ 1 $\boldsymbol{\prec}$ 0.5 0 2 -2 0 4 δ

Assume

$$\sim \exp(-i\lambda \overline{z})$$

And a finite detuning

$$\delta = \frac{k - k_r}{2k_r \rho}$$

$$\lambda_1 = -\frac{1}{2} + \frac{\delta}{3} - \frac{\delta^2}{18} + i\frac{\sqrt{3}}{2}\left(1 - \frac{\delta^2}{9}\right)$$

 $\sigma_{\omega}/\omega = 6\rho/\sqrt{(2\sqrt{3}\bar{z})}$

Bandwidth ~ z $\frac{1}{2}$ @ saturation $\Delta\omega/\omega \sim \rho$

$$To 2^{nd} Order... \qquad \text{SLAC}$$
$$\lambda_1 = -\frac{1}{2} + \frac{\delta}{3} + \frac{\delta^2}{18} + i\frac{\sqrt{3}}{2}\left(1 - \frac{\delta^2}{9}\right)$$

Group Velocity = $v_b + 1/3$ slippage rate

Initial Value Problem SLA

$$a = \sum_{j=1}^{3} \frac{-i}{\frac{d}{d\lambda}D|_{\lambda=\lambda_j}} \exp(-i\lambda\bar{z})(i\lambda_j^2a_0 + \lambda_jb_0 + p_0)$$

Initial values of three variables

$$D(\lambda,\delta)=\lambda^3-\delta\lambda^2-1$$

Example:

Seeded FEL @ resonance

$$P = \frac{1}{9}P_0 \exp(\sqrt{3}\overline{z})$$

FEL can be triggered by either

- an initial radiation field
- an initial microbunching
- an initial energy modulation

Experimentally, at x-rays it's difficult to generate a starting value for any of these quantities

Shot-Noise

Luckily nature gives us a natural initial value for beam microbunching: NOISE

 $< b_{sn} >= 0$

 $< \left| b_{sn} \right|^2 > = \frac{1}{N}$

Figure from: Avraham Gover et al.

Nature Physics **8**, 877–880 (2012) doi:10.1038/ nphys2443

Shot-Noise Microbunching In Frequency Domain

Increasing bunch length: Narrower spikes

Shot-Noise Microbunching (k-k') $< b(k)b^*(k') > =$

> Spectral autocorrelation ~ Fourier transform of longitudinal distribution at k-k'

(Nice derivation in Saldin's book!)

 Δ Photon Energy

Using Highly Resolved Single-Shot Spectra

Yuichi Inubushi,1,* Kensuke Tono,2 Tadashi Togashi,2 Takahiro Sato,1 Takaki Hatsui,1 Takashi Kameshima,2 Kazuaki Togawa,1 Toru Hara,1 Takashi Tanaka,1 Hitoshi Tanaka,1 Tetsuya Ishikawa,1 and Makina Yabashi

SASE Spectrum

SLAC

Self Amplified Spontaneous Emissionec

$$a(\bar{z},\delta) = G(\bar{z},\delta)b_0$$

From initial value problem

$$G(\bar{z},\delta) = \frac{-i}{3\lambda - 2\delta} \exp(-i\lambda\bar{z})$$

In SASE b₀ is shot-noise microbunching

$$< b_{sn} >= 0$$

$$<\left|b_{sn}\right|^{2}>=\frac{1}{N}$$

Using Our 1-D Theory... SLAC

$$<\bar{a}(\bar{z}_1)\bar{a}^*(\bar{z}_1+\bar{z}_1')>=\left(\frac{k_rL_b\rho}{N\pi}\right)\int\exp(-i\delta\bar{z}_1')|G(\bar{z},\delta')|^2d\delta$$

Wiener's theorem:

Autocorrelation function = Fourier Transform of spectral power density

Using the same Gaussian approximation as before:

$$<\bar{a}(\bar{z},\bar{z}_1)\bar{a}^*(\bar{z},\bar{z}_1+\bar{z}_1')>=<|\bar{a}(\bar{z},\bar{z}_1)|^2>\exp\left(-\frac{\bar{z}_1'^2}{2\sigma_{\bar{z}_1,c}^2}\right)$$

 $\sigma_{\bar{z}_1,c} = \frac{\sqrt{2\sqrt{3}\bar{z}}}{3} \quad \blacktriangleleft$

Coherence length grows as a function of time! (Consistently with our intuition from previous slide...)

SASE Spikes: Experimental Observation

Characterization of a Chaotic Optical Field Using a High-Gain, Self-Amplified Free-Electron Laser

Yuelin Li,^{1,*} Samuel Krinsky,² John W. Lewellen,¹ Kwang-Je Kim,¹ Vadim Sajaev,¹ and Stephen V. Milton¹

What is the Average Power? SLAC

$$\bar{a}(\bar{z},\bar{z}_1) = \frac{k_r L_b \rho}{\pi} \int \exp(i\delta\bar{z}_1) b_0(\delta) G(\bar{z},\delta) d\delta$$

We can use Parseval's theorem to compute average power

$$< |\bar{a}(\bar{z}, \bar{z}_1)|^2 > = \frac{k_r L_b \rho}{N\pi} \int |G(\bar{z}, \delta)|^2 d\delta$$

Equivalent Shot-Noise Power SLAC

Approximate solution by neglecting d dependence of residue term:

Gain function turns into a Gaussian!

$$P_{SASE} = \frac{1}{9} P_{sn} \exp\left(2\rho k_w \sqrt{3}z\right)$$
$$P_{sn} = P_b \frac{6\rho^2}{N_\lambda} \sqrt{\frac{\pi}{\bar{z}\sqrt{3}}}$$

 N_{λ} number of particles in a wavelength

~few to tens of kW for typical x-ray FELs

Bibliography

COLLECTIVE INSTABILITIES AND HIGH-GAIN REGIME IN A FREE ELECTRON LASER

R. BONIFACIO *, C. PELLEGRINI

National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA

and

L.M. NARDUCCI

Physics Department, Drexel University, Philadelphia, PA 19104, USA

Received 5 April 1984

VOLUME 73, NUMBER 1

PHYSICAL REVIEW LETTERS

4 JULY 1994

Spectrum, Temporal Structure, and Fluctuations in a High-Gain Free-Electron Laser Starting from Noise

R. Bonifacio,^{1,2} L. De Salvo,¹ P. Pierini,² N. Piovella,¹ and C. Pellegrini³

So far we have made a number of assumptions

 No velocity spread: energy-spread = 0 emittance = 0

2) No diffraction

3) Small signal

4) Slowly varying envelope

So far we have made a number of assumptions

 No velocity spread: energy-spread = 0 emittance = 0

2) No diffraction

Increasing levels of complication can address these theoretically

3) Small signal

4) Slowly varying envelope

So far we have made a number of assumptions

1) No velocity spread: energy-spread = 0 emittance = 0

2) No diffraction

4) Slowly varying envelope

Needed for any reasonble analytical model BUT it obviously fails at saturation...

So far we have made a number of assumptions

1) No velocity spread: energy-spread = 0 emittance = 0

2) No diffraction

3) Small signal

Verified in most cases of interest (it can be dropped and equations can be solved numerically...)

See Maroli et al. PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 14, 070703 (2011)

Fully 3-D Theory

Introduction to the Physics of Free Electron Lasers ¹

Kwang-Je Kim (ANL), Zhirong Huang (SLAC), Ryan Lindberg (ANL)

June 10, 2010

Fully 3-D theory that includes: -e-spread -emittance -diffraction Developed by Yu, Kim, Xie and Huang

Fully 3-D Theory SLAC

Electrons perform transverse betatron oscillations

Introduction to the Physics of Free Electron Lasers ¹

Kwang-Je Kim (ANL), Zhirong Huang (SLAC), Ryan Lindberg (ANL)

June 10, 2010

Fully 3-D Theory

min

Fully 3-D theory that includes: -e-spread -emittance -diffraction Developed by L. H. Yu, Kim, Xie and Hua

$$x_{\beta} = x_o \cos(k_{\beta x} z) + \frac{x'_0}{k_{\beta x}} \sin(k_{\beta x} z),$$
$$\bigstar$$
$$x'_{\beta} = x'_o \cos(k_{\beta x} z) - x_0 k_{\beta x} \sin(k_{\beta x} z).$$

Electrons perform transverse betatron oscillations

 $\lambda_{\beta_x} = 2z \ \overline{\beta}_x$

h

min

$$\beta_{\parallel} = \sqrt{1 - \frac{1}{\gamma^2} - \beta_{\perp}^2} \approx 1 - \frac{1}{2\gamma^2} - \frac{\beta_{\perp}^2}{2}$$

Transverse oscillations introduce an extra term in LONGITUDINAL velocity spread.

SLAC

Density in 6-D phasespace

SLAC

Stationary 0-th order distribution

,

$$\bar{f}_0(\bar{p}^2 + \bar{k}_\beta^2 \bar{x}^2, \bar{\eta}) = \frac{1}{2\pi \bar{k}_\beta^2 \bar{\sigma}_x^2} \exp\left(-\frac{\bar{p}^2 + \bar{k}_\beta^2 \bar{x}^2}{2\bar{k}_\beta^2 \bar{\sigma}_x^2}\right) \frac{1}{\sqrt{2\pi \bar{\sigma}_\eta}} \exp\left(-\frac{\bar{\eta}^2}{2\bar{\sigma}_\eta^2}\right)$$

 $\left|f_{1}\right| << f_{0}$

$$\begin{pmatrix} \mu_l A_l + \left(-\bar{\nu} + \frac{\bar{\boldsymbol{\nabla}}_{\perp}^2}{2}\right) A_l + i \int d^2 \bar{p} \int d\bar{\eta} \mathcal{F}_l \\ \mu_l \mathcal{F}_l + i A_l \frac{\partial \bar{f}_0}{\partial \bar{\eta}} + \left[-\nu \dot{\theta} + i \left(\bar{\boldsymbol{p}} \frac{\partial}{\partial \bar{\boldsymbol{x}}} - \bar{k}_{\beta}^2 \bar{\boldsymbol{x}} \frac{\partial}{\partial \bar{\boldsymbol{p}}}\right)\right] \mathcal{F}_l \end{pmatrix} = 0.$$
$$\dot{\theta} = \frac{d\theta}{d\bar{z}} = \bar{\eta} - \frac{\bar{\boldsymbol{p}}^2 + \bar{k}_{\beta}^2 \bar{\boldsymbol{x}}^2}{2}$$

 $\begin{pmatrix} \mu_l A_l + \left(-\bar{\nu} + \frac{\bar{\nabla}_{\perp}^2}{2}\right) A_l + i \int d^2 \bar{p} \int d\bar{\eta} \mathcal{F}_l \\ \mu_l \mathcal{F}_l + i A_l \frac{\partial \bar{f}_0}{\partial \bar{\eta}} + \left[-\nu \dot{\theta} + i \left(\bar{p} \frac{\partial}{\partial \bar{x}} - \bar{k}_{\beta}^2 \bar{x} \frac{\partial}{\partial \bar{p}}\right)\right] \mathcal{F}_l \end{pmatrix} = 0.$ Transverse betatron oscillation term

 $\begin{pmatrix} \mu_l A_l + \left(-\bar{\nu} + \frac{\bar{\boldsymbol{\nabla}}_{\perp}^2}{2}\right) A_l + i \int d^2 \bar{p} \int d\bar{\eta} \mathcal{F}_l \\ \mu_l \mathcal{F}_l + i A_l \frac{\partial \bar{f}_0}{\partial \bar{\eta}} + \left[-\nu \dot{\theta} + i \left(\bar{\boldsymbol{p}} \frac{\partial}{\partial \bar{\boldsymbol{x}}} - \bar{k}_{\beta}^2 \bar{\boldsymbol{x}} \frac{\partial}{\partial \bar{\boldsymbol{p}}}\right)\right] \mathcal{F}_l \end{pmatrix} = 0.$

$$\begin{pmatrix} \mu_l A_l + \left(-\bar{\nu} + \frac{\bar{\nabla}_{\perp}^2}{2}\right) A_l + i \int d^2 \bar{p} \int d\bar{\eta} \mathcal{F}_l \\ \mu_l \mathcal{F}_l + i A_l \frac{\partial \bar{f}_0}{\partial \bar{\eta}} + \left[-\nu \dot{\theta} + i \left(\bar{p} \frac{\partial}{\partial \bar{x}} - \bar{k}_{\beta}^2 \bar{x} \frac{\partial}{\partial \bar{p}}\right)\right] \mathcal{F}_l \end{pmatrix} = 0.$$

Solve distribution function as a function of radiation field

$$\mathcal{F}_{l} = -\frac{\partial \bar{f}_{0}}{\partial \bar{\eta}} \int_{-\infty}^{0} d\tau A_{l} \left(\bar{\boldsymbol{x}}_{+} \right) e^{i(\nu \dot{\theta} - \mu_{n})\tau}$$

 $\bar{x}_{+} = \bar{x}\cos\bar{k}_{\beta}\tau + rac{\bar{p}}{\bar{k}_{\beta}}\sin\bar{k}_{\beta}\tau$

$$\begin{pmatrix} \mu_l A_l + \left(-\bar{\nu} + \frac{\bar{\nabla}_{\perp}^2}{2} \right) A_l + i \int d^2 \bar{p} \int d\bar{\eta} \mathcal{F}_l \\ \mu_l \mathcal{F}_l + i A_l \frac{\partial \bar{f}_0}{\partial \bar{\eta}} + \left[-\nu \dot{\theta} + i \left(\bar{p} \frac{\partial}{\partial \bar{x}} - \bar{k}_{\beta}^2 \bar{x} \frac{\partial}{\partial \bar{p}} \right) \right] \mathcal{F}_l \end{pmatrix} = 0.$$
Substitute in the 3-D Field Equation

$$\left(\mu - \bar{\nu} + \frac{\bar{\boldsymbol{\nabla}}_{\perp}^2}{2} \right) A(\bar{\boldsymbol{x}}) - \frac{1}{2\pi\bar{\sigma}_x^2} \int_{-\infty}^0 \tau d\tau \frac{e^{-\bar{\sigma}_\eta^2 \tau^2/2 - i\mu\tau}}{\sin^2(\bar{k}_\beta \tau)} \int d^2 \bar{\boldsymbol{x}}' A(\bar{\boldsymbol{x}}') \times \exp\left[-\frac{\bar{\boldsymbol{x}}^2 + (\bar{\boldsymbol{x}}')^2 - 2\bar{\boldsymbol{x}} \cdot \bar{\boldsymbol{x}}' \cos(\bar{k}_\beta \tau)}{2\sin^2(\bar{k}_\beta \tau)} \left(i\bar{k}_\beta^2 \tau + \frac{1}{\bar{\sigma}_x^2} \right) \right] = 0.$$

SLAC

IT LOOKS UGLY BUT... The dispersion relation can be expressed as a function

of 4 dimensionless parameters

$$\left(\mu - \bar{\nu} + \frac{\bar{\nabla}_{\perp}^2}{2} \right) A(\bar{x}) - \frac{1}{2\pi\bar{\sigma}_x^2} \int_{-\infty}^0 \tau d\tau \frac{e^{-\bar{\sigma}_\eta^2 \tau^2/2 - i\mu\tau}}{\sin^2(\bar{k}_\beta \tau)} \int d^2 \bar{x}' A(\bar{x}')$$
$$\times \exp\left[-\frac{\bar{x}^2 + (\bar{x}')^2 - 2\bar{x} \cdot \bar{x}' \cos(\bar{k}_\beta \tau)}{2\sin^2(\bar{k}_\beta \tau)} \left(\frac{i\bar{k}_\beta^2 \tau + \frac{1}{\bar{\sigma}_x^2}}{2\bar{\sigma}_x^2} \right) \right] = 0.$$

SLAC

IT LOOKS UGLY BUT... The dispersion relation can be expressed as a function of 4 dimensionless parameters

$$\begin{pmatrix} \mu & \overline{\nu} + \frac{\bar{\nabla}_{\perp}^2}{2} \end{pmatrix} A(\bar{x}) - \frac{1}{2\pi\bar{\sigma}_x^2} \int_{-\infty}^0 \tau d\tau \frac{e^{-\bar{\sigma}_\eta^2 \tau^2/2 - i\mu\tau}}{\sin^2(\bar{k}_\beta \tau)} \int d^2 \bar{x}' A(\bar{x}') \\ \int \times \exp\left[-\frac{\bar{x}^2 + (\bar{x}')^2 - 2\bar{x} \cdot \bar{x}' \cos(\bar{k}_\beta \tau)}{2\sin^2(\bar{k}_\beta \tau)} \left(i\bar{k}_\beta^2 \tau + \frac{1}{\bar{\sigma}_x^2} \right) \right] = 0.$$

$$\bar{\mathcal{V}}$$

Detuning / ρ

SLAC

IT LOOKS UGLY BUT... The dispersion relation can be expressed as a function of 4 dimensionless parameters

$$\begin{split} \left(\mu - \bar{\nu} + \frac{\bar{\nabla}_{\perp}^2}{2}\right) & A(\bar{x}) - \frac{1}{2\pi\bar{\sigma}_x^2} \int_{-\infty}^0 \tau d\tau \frac{e^{-\bar{\sigma}_\eta^2 \tau^2/2 - i\mu\tau}}{\sin^2(\bar{k}_\beta \tau)} \int d^2 \bar{x}' A(\bar{x}') \\ & \times \exp\left[-\frac{\bar{x}^2 + (\bar{x}')^2 - 2\bar{x} \cdot \bar{x}' \cos(\bar{k}_\beta \tau)}{2\sin^2(\bar{k}_\beta \tau)} \left(i\bar{k}_\beta^2 \tau + \frac{1}{\bar{\sigma}_x^2}\right)\right] = 0. \\ \bar{\sigma}_x &= \sigma_x \sqrt{2k_1 k_u \rho} = \frac{2}{\sqrt{3}} \frac{L_R}{L_{G0}} \qquad \begin{array}{c} \text{Diffraction negligible if} \\ & Z_R > L_{G0} \quad \text{or} \quad \bar{\sigma}_x > 1 \end{array}$$

Diffraction parameter

SLAC

IT LOOKS UGLY BUT... The dispersion relation can be expressed as a function of 4 dimensionless parameters

$$\begin{split} \left(\mu - \bar{\nu} + \frac{\bar{\boldsymbol{\nabla}}_{\perp}^2}{2}\right) & A(\bar{\boldsymbol{x}}) - \frac{1}{2\pi\bar{\sigma}_x^2} \int_{-\infty}^0 \tau d\tau \frac{e^{-\bar{\sigma}_\eta^2 \tau^2/2 - i\mu\tau}}{\sin^2(\bar{k}_\beta \tau)} \int d^2 \bar{\boldsymbol{x}}' A(\bar{\boldsymbol{x}}') \\ & \times \exp\left[-\frac{\bar{\boldsymbol{x}}^2 + (\bar{\boldsymbol{x}}')^2 - 2\bar{\boldsymbol{x}} \cdot \bar{\boldsymbol{x}}' \cos(\bar{k}_\beta \tau)}{2\sin^2(\bar{k}_\beta \tau)} \left(i\bar{k}_\beta^2 \tau + \frac{1}{\bar{\sigma}_x^2}\right)\right] = 0. \\ & \bar{\sigma}_\eta = \frac{\Delta\gamma}{\gamma\rho} \\ & \text{Energy Spread Parameter} \\ (\text{same as 1-D theory!}) \end{split}$$

IT LOOKS UGLY BUT... The dispersion relation can be expressed as a function of 4 dimensionless parameters

$$\begin{pmatrix} \mu - \bar{\nu} + \frac{\bar{\nabla}_{\perp}^2}{2} \end{pmatrix} A(\bar{x}) - \frac{1}{2\pi\bar{\sigma}_x^2} \int_{-\infty}^0 \tau d\tau \frac{e^{-\bar{\sigma}_\eta^2 \tau^2/2 - i\mu\tau}}{\sin^2(\bar{k}_\beta \tau)} \int d^2 \bar{x}' A(\bar{x}') \\ \times \exp\left[-\frac{\bar{x}^2 + (\bar{x}')^2 - 2\bar{x} \cdot \bar{x}' \cos(\bar{k}_\beta \tau)}{2\sin^2(\bar{k}_\beta \tau)} \left(i\bar{k}_\beta^2 \tau + \frac{1}{\bar{\sigma}_x^2}\right)\right] = 0.$$
$$\bar{\sigma}_x^2 \bar{k}_\beta = \frac{\varepsilon}{2\varepsilon_r}$$

Emittance parameter

$$\varepsilon_r = \lambda_1/(4\pi)$$

SLAC

Variational Principle

 $\exp(-wR^2)$

Project dispersion relation onto a Gaussian mode (~ fundamental mode...).

2 unknown quantities 1 equation... Need another equation!

$$\partial \mu_0 / \partial w = 0$$

Variational principle: Solution is a stationary point!

Ming Xie Fitting Formula

$$L_G = L_{G0} \frac{\sqrt{3}/2}{\text{Im}(\mu_{00})} = L_{G0}(1+\Lambda)$$

Exact and Variational Solutions of 3D Eigenmodes in High Gain FELs

Ming Xie Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

$$\Lambda = a_1 \eta_d^{a_2} + a_3 \eta_{\varepsilon}^{a_4} + a_5 \eta_{\gamma}^{a_6} + a_7 \eta_{\varepsilon}^{a_8} \eta_{\gamma}^{a_9} + a_{10} \eta_d^{a_{11}} \eta_{\gamma}^{a_{12}} + a_{13} \eta_d^{a_{14}} \eta_{\varepsilon}^{a_{15}} + a_{16} \eta_d^{a_{17}} \eta_{\varepsilon}^{a_{18}} \eta_{\gamma}^{a_{19}}$$

 $a_1 = 0.45, \quad a_2 = 0.57, \quad a_3 = 0.55, \quad a_4 = 1.6, \quad a_5 = 3,$ $a_6 = 2, \quad a_7 = 0.35, \quad a_8 = 2.9, \quad a_9 = 2.4, \quad a_{10} = 51,$ $a_{11} = 0.95, \quad a_{12} = 3, \quad a_{13} = 5.4, \quad a_{14} = 0.7, \quad a_{15} = 1.9,$ $a_{16} = 1140, \quad a_{17} = 2.2 \quad a_{18} = 2.9, \quad a_{19} = 3.2.$

Examples: LCLS Mode Structure

Dispersion relation has to be solved numerically...

Intensity

Examples: LCLS Detuning Curves

Examples: LCLS Detuning Curvelac

Example: Beta Function Optimization

In the 1-D theory the more you focus the shorter the gainlength

In the 3-D theory you have a competing effect:

 $\sigma_{\beta_1}^2 = \varepsilon / \beta \gamma$

The more you focus the more you increase longitudinal velocity spread!

Example: Beta Function Optimization

In the 1-D theory the more you focus the shorter the gainlength

In the 3-D theory you have a competing effect:

 $\sigma_{\beta_1}^2 = \varepsilon / \beta \gamma$

The more you focus the more you increase longitudinal velocity spread!